BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 22236189)

  • 1. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets.
    Mao H; Lebrun DG; Yang J; Zhu VF; Li M
    Cancer Invest; 2012 Jan; 30(1):48-56. PubMed ID: 22236189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular pathways and potential therapeutic targets in glioblastoma multiforme.
    Wardak Z; Choe KS
    Expert Rev Anticancer Ther; 2013 Nov; 13(11):1307-18. PubMed ID: 24168050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date.
    Bastien JI; McNeill KA; Fine HA
    Cancer; 2015 Feb; 121(4):502-16. PubMed ID: 25250735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SnapShot: glioblastoma multiforme.
    Kotliarova S; Fine HA
    Cancer Cell; 2012 May; 21(5):710-710.e1. PubMed ID: 22624719
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy.
    Wang G; Wang J; Zhao H; Wang J; Tony To SS
    Arch Biochem Biophys; 2015 Aug; 580():84-92. PubMed ID: 26151775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications.
    Papavassiliou KA; Papavassiliou AG
    Biochim Biophys Acta Rev Cancer; 2022 Jan; 1877(1):188667. PubMed ID: 34894431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway.
    Soukhtanloo M; Mohtashami E; Maghrouni A; Mollazadeh H; Mousavi SH; Roshan MK; Tabatabaeizadeh SA; Hosseini A; Vahedi MM; Jalili-Nik M; Afshari AR
    Pharmacol Rep; 2020 Apr; 72(2):285-295. PubMed ID: 32152926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting metabolic remodeling in glioblastoma multiforme.
    Wolf A; Agnihotri S; Guha A
    Oncotarget; 2010 Nov; 1(7):552-62. PubMed ID: 21317451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy.
    Wang S; Gu S; Chen J; Yuan Z; Liang P; Cui H
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics.
    Krakstad C; Chekenya M
    Mol Cancer; 2010 Jun; 9():135. PubMed ID: 20515495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells.
    Camorani S; Crescenzi E; Colecchia D; Carpentieri A; Amoresano A; Fedele M; Chiariello M; Cerchia L
    Oncotarget; 2015 Nov; 6(35):37570-87. PubMed ID: 26461476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular signaling molecules as therapeutic targets in glioblastoma multiforme.
    Jagannathan J; Prevedello DM; Dumont AS; Laws ER
    Neurosurg Focus; 2006 Apr; 20(4):E8. PubMed ID: 16709039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioblastoma precision therapy: From the bench to the clinic.
    Zhou Y; Wu W; Bi H; Yang D; Zhang C
    Cancer Lett; 2020 Apr; 475():79-91. PubMed ID: 32004571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment.
    Chang N; Ahn SH; Kong DS; Lee HW; Nam DH
    Mol Cell Endocrinol; 2017 Aug; 451():53-65. PubMed ID: 28089821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the AKT pathway in glioblastoma.
    McDowell KA; Riggins GJ; Gallia GL
    Curr Pharm Des; 2011; 17(23):2411-20. PubMed ID: 21827416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foretinib induces G2/M cell cycle arrest, apoptosis, and invasion in human glioblastoma cells through c-MET inhibition.
    Gortany NK; Panahi G; Ghafari H; Shekari M; Ghazi-Khansari M
    Cancer Chemother Pharmacol; 2021 Jun; 87(6):827-842. PubMed ID: 33688998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3.
    Shan ZN; Tian R; Zhang M; Gui ZH; Wu J; Ding M; Zhou XF; He J
    Oncotarget; 2016 Nov; 7(48):78813-78826. PubMed ID: 27705931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma.
    Trejo-Solís C; Serrano-Garcia N; Escamilla-Ramírez Á; Castillo-Rodríguez RA; Jimenez-Farfan D; Palencia G; Calvillo M; Alvarez-Lemus MA; Flores-Nájera A; Cruz-Salgado A; Sotelo J
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30486451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma.
    Wang G; Fu XL; Wang JJ; Guan R; Tang XJ
    Curr Cancer Drug Targets; 2017; 17(1):17-39. PubMed ID: 27562399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.