BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22236330)

  • 1. Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion.
    Li X; Gittleson F; Carmo M; Sekol RC; Taylor AD
    ACS Nano; 2012 Feb; 6(2):1347-56. PubMed ID: 22236330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
    Chang J; Najeeb CK; Lee JH; Kim JH
    Langmuir; 2011 Jun; 27(11):7330-6. PubMed ID: 21557548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.
    Naeem F; Prestayko R; Saem S; Nowicki L; Imit M; Adronov A; Moran-Mirabal JM
    Nanotechnology; 2015 Oct; 26(39):395301. PubMed ID: 26351867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites.
    De S; Lyons PE; Sorel S; Doherty EM; King PJ; Blau WJ; Nirmalraj PN; Boland JJ; Scardaci V; Joimel J; Coleman JN
    ACS Nano; 2009 Mar; 3(3):714-20. PubMed ID: 19227998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method.
    Lei T; Pochorovski I; Bao Z
    Acc Chem Res; 2017 Apr; 50(4):1096-1104. PubMed ID: 28358486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine.
    Lin DW; Bettinger CJ; Ferreira JP; Wang CL; Bao Z
    ACS Nano; 2011 Dec; 5(12):10026-32. PubMed ID: 22053708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT; Kim JS; Jo SB; Kim SH; Kim JS; Kang B; Jeong HJ; Jeong SY; Lee GW; Cho K
    Nanoscale; 2012 Dec; 4(24):7735-42. PubMed ID: 23135484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive single-walled carbon nanotube thin film preparation by direct alignment on substrates from water dispersions.
    Azoz S; Exarhos AL; Marquez A; Gilbertson LM; Nejati S; Cha JJ; Zimmerman JB; Kikkawa JM; Pfefferle LD
    Langmuir; 2015 Jan; 31(3):1155-63. PubMed ID: 25547120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous and scalable fabrication of transparent conducting carbon nanotube films.
    Dan B; Irvin GC; Pasquali M
    ACS Nano; 2009 Apr; 3(4):835-43. PubMed ID: 19354279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface chemistry on electronic properties of carbon nanotube network thin film transistors.
    Vosgueritchian M; LeMieux MC; Dodge D; Bao Z
    ACS Nano; 2010 Oct; 4(10):6137-45. PubMed ID: 20857943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fabrication of single-walled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment.
    Tian Y; Park JG; Cheng Q; Liang Z; Zhang C; Wang B
    Nanotechnology; 2009 Aug; 20(33):335601. PubMed ID: 19636092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-walled carbon nanotube combing during layer-by-layer assembly: from random adsorption to aligned composites.
    Shim BS; Kotov NA
    Langmuir; 2005 Oct; 21(21):9381-5. PubMed ID: 16207007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular electronic devices based on single-walled carbon nanotube electrodes.
    Feldman AK; Steigerwald ML; Guo X; Nuckolls C
    Acc Chem Res; 2008 Dec; 41(12):1731-41. PubMed ID: 18798657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.
    Sun X; Chen T; Yang Z; Peng H
    Acc Chem Res; 2013 Feb; 46(2):539-49. PubMed ID: 23170988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite electronic materials based on poly(3,4-propylenedioxythiophene) and highly charged poly(aryleneethynylene)-wrapped carbon nanotubes for supercapacitors.
    Rosario-Canales MR; Deria P; Therien MJ; Santiago-Avilés JJ
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):102-9. PubMed ID: 22136160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of surface modifications of carbon nanotubes on the electrical properties of inkjet-printed SWNT/PEDOT-PSS composite line patterns.
    Najeeb CK; Lee JH; Chang J; Kim JH
    Nanotechnology; 2010 Sep; 21(38):385302. PubMed ID: 20739744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating.
    Jo JW; Jung JW; Lee JU; Jo WH
    ACS Nano; 2010 Sep; 4(9):5382-8. PubMed ID: 20735061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.