BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 22236555)

  • 1. Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating.
    Petosa AR; Brennan SJ; Rajput F; Tufenkji N
    Water Res; 2012 Mar; 46(4):1273-85. PubMed ID: 22236555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition.
    Kurlanda-Witek H; Ngwenya BT; Butler IB
    J Contam Hydrol; 2014 Jul; 162-163():17-26. PubMed ID: 24796515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.
    Petosa AR; Ohl C; Rajput F; Tufenkji N
    Water Res; 2013 Oct; 47(15):5889-900. PubMed ID: 23916155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of metal oxide nanoparticles in saturated porous media.
    Ben-Moshe T; Dror I; Berkowitz B
    Chemosphere; 2010 Sep; 81(3):387-93. PubMed ID: 20678789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2010 Nov; 118(3-4):199-207. PubMed ID: 20739092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.
    Kurlanda-Witek H; Ngwenya BT; Butler IB
    J Contam Hydrol; 2015 Aug; 179():160-70. PubMed ID: 26140853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media.
    Kumari J; Mathur A; Rajeshwari A; Venkatesan A; S S; Pulimi M; Chandrasekaran N; Nagarajan R; Mukherjee A
    PLoS One; 2015; 10(8):e0134796. PubMed ID: 26252479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand.
    Quevedo IR; Tufenkji N
    Environ Sci Technol; 2012 Apr; 46(8):4449-57. PubMed ID: 22423631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns.
    Sun P; Shijirbaatar A; Fang J; Owens G; Lin D; Zhang K
    Sci Total Environ; 2015 Feb; 505():189-98. PubMed ID: 25461021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.