These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22236713)
1. Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. Povysheva NV; Johnson JW J Neurophysiol; 2012 Apr; 107(8):2232-43. PubMed ID: 22236713 [TBL] [Abstract][Full Text] [Related]
2. Tonically active NMDA receptors--a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Riebe I; Seth H; Culley G; Dósa Z; Radi S; Strand K; Fröjd V; Hanse E Eur J Neurosci; 2016 Jan; 43(2):169-78. PubMed ID: 26547631 [TBL] [Abstract][Full Text] [Related]
3. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. McQuail JA; Beas BS; Kelly KB; Hernandez CM; Bizon JL; Frazier CJ Neuropharmacology; 2021 Oct; 197():108720. PubMed ID: 34273386 [TBL] [Abstract][Full Text] [Related]
4. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. Angulo MC; Rossier J; Audinat E J Neurophysiol; 1999 Sep; 82(3):1295-302. PubMed ID: 10482748 [TBL] [Abstract][Full Text] [Related]
5. Prolonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex. Wang HX; Gao WJ Neuropharmacology; 2012 Mar; 62(4):1808-22. PubMed ID: 22182778 [TBL] [Abstract][Full Text] [Related]
6. Ketamine Administration During the Second Postnatal Week Alters Synaptic Properties of Fast-Spiking Interneurons in the Medial Prefrontal Cortex of Adult Mice. Jeevakumar V; Kroener S Cereb Cortex; 2016 Mar; 26(3):1117-29. PubMed ID: 25477370 [TBL] [Abstract][Full Text] [Related]
8. Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. Morin F; Beaulieu C; Lacaille JC J Neurophysiol; 1996 Jul; 76(1):1-16. PubMed ID: 8836204 [TBL] [Abstract][Full Text] [Related]
9. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons. Zhong P; Yan Z Cereb Cortex; 2016 Jan; 26(1):180-91. PubMed ID: 25146372 [TBL] [Abstract][Full Text] [Related]
10. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Homayoun H; Moghaddam B J Neurosci; 2007 Oct; 27(43):11496-500. PubMed ID: 17959792 [TBL] [Abstract][Full Text] [Related]
11. Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Povysheva NV; Gonzalez-Burgos G; Zaitsev AV; Kröner S; Barrionuevo G; Lewis DA; Krimer LS Cereb Cortex; 2006 Apr; 16(4):541-52. PubMed ID: 16033926 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. Ling DS; Benardo LS J Neurophysiol; 1995 Dec; 74(6):2329-35. PubMed ID: 8747195 [TBL] [Abstract][Full Text] [Related]
13. High Salt Intake Recruits Tonic Activation of NR2D Subunit-Containing Extrasynaptic NMDARs in Vasopressin Neurons. Neupane C; Sharma R; Pai YH; Lee SY; Jeon BH; Kim HW; Stern JE; Park JB J Neurosci; 2021 Feb; 41(6):1145-1156. PubMed ID: 33303677 [TBL] [Abstract][Full Text] [Related]
14. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Aracri P; Banfi D; Pasini ME; Amadeo A; Becchetti A Cereb Cortex; 2015 May; 25(5):1330-47. PubMed ID: 24297328 [TBL] [Abstract][Full Text] [Related]
15. Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. Rotaru DC; Yoshino H; Lewis DA; Ermentrout GB; Gonzalez-Burgos G J Neurosci; 2011 Jan; 31(1):142-56. PubMed ID: 21209199 [TBL] [Abstract][Full Text] [Related]
16. NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus. Alkondon M; Pereira EF; Albuquerque EX J Neurophysiol; 2003 Sep; 90(3):1613-25. PubMed ID: 12702709 [TBL] [Abstract][Full Text] [Related]
17. Target-specific regulation of synaptic amplitudes in the neocortex. Watanabe J; Rozov A; Wollmuth LP J Neurosci; 2005 Jan; 25(4):1024-33. PubMed ID: 15673684 [TBL] [Abstract][Full Text] [Related]
18. [Properties of spontaneous and miniature excitatory postsynaptic currents of rat prefrontal cortex neurons]. Malkin SL; Kim KKh; Tikhonov DB; Zaitsev AV Zh Evol Biokhim Fiziol; 2014; 50(6):440-6. PubMed ID: 25782285 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Korinek M; Sedlacek M; Cais O; Dittert I; Vyklicky L Neuroscience; 2010 Feb; 165(3):736-48. PubMed ID: 19883737 [TBL] [Abstract][Full Text] [Related]
20. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]