BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22237602)

  • 1. Towards the realization of label-free biosensors through impedance spectroscopy integrated with IDES technology.
    Di Capua R; Barra M; Santoro F; Viggiano D; Ambrosino P; Soldovieri MV; Taglialatela M; Cassinese A
    Eur Biophys J; 2012 Feb; 41(2):249-56. PubMed ID: 22237602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system.
    Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S
    Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P
    Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing.
    Patskovsky S; Latendresse V; Dallaire AM; Doré-Mathieu L; Meunier M
    Analyst; 2014 Feb; 139(3):596-602. PubMed ID: 24317183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation.
    Lindholm-Sethson B; Nyström J; Malmsten M; Ringstad L; Nelson A; Geladi P
    Anal Bioanal Chem; 2010 Nov; 398(6):2341-9. PubMed ID: 20676616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Self-Assembled Monolayer Design and Electrochemical Factors on Impedance-Based Biosensing.
    Brothers MC; Moore D; St Lawrence M; Harris J; Joseph RM; Ratcliff E; Ruiz ON; Glavin N; Kim SS
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on impedimetric biosensors.
    Bahadır EB; Sezgintürk MK
    Artif Cells Nanomed Biotechnol; 2016; 44(1):248-62. PubMed ID: 25211230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology.
    Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of bacterial metabolism in lag-phase using impedance spectroscopy of agar-integrated 3D microelectrodes.
    Butler D; Goel N; Goodnight L; Tadigadapa S; Ebrahimi A
    Biosens Bioelectron; 2019 Mar; 129():269-276. PubMed ID: 30297173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedimetric biosensors for liver function detection.
    Chuang YH; Chang YT; Liu KL; Chang HY; Yew TR
    Biosens Bioelectron; 2011 Oct; 28(1):368-72. PubMed ID: 21840200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor.
    Ward AC; Connolly P; Tucker NP
    PLoS One; 2014; 9(3):e91732. PubMed ID: 24614411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations.
    Korek EM; Teotia R; Herbig D; Brederlow R
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.
    Yoon OJ; Kim I; Sohn IY; Kieu TT; Lee NE
    J Biomed Mater Res A; 2014 Jul; 102(7):2288-94. PubMed ID: 23894129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures.
    Ehret R; Baumann W; Brischwein M; Schwinde A; Stegbauer K; Wolf B
    Biosens Bioelectron; 1997; 12(1):29-41. PubMed ID: 8976050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Electrode Connection Tracks on Biological Cell Measurements by Impedance Spectroscopy.
    Alves de Araujo AL; Claudel J; Kourtiche D; Nadi M
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31247894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors.
    Yagati AK; Behrent A; Beck S; Rink S; Goepferich AM; Min J; Lee MH; Baeumner AJ
    Biosens Bioelectron; 2020 Sep; 164():112272. PubMed ID: 32553348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.