These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 22237602)
1. Towards the realization of label-free biosensors through impedance spectroscopy integrated with IDES technology. Di Capua R; Barra M; Santoro F; Viggiano D; Ambrosino P; Soldovieri MV; Taglialatela M; Cassinese A Eur Biophys J; 2012 Feb; 41(2):249-56. PubMed ID: 22237602 [TBL] [Abstract][Full Text] [Related]
2. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Heileman K; Daoud J; Tabrizian M Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534 [TBL] [Abstract][Full Text] [Related]
3. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402 [TBL] [Abstract][Full Text] [Related]
4. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency. Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673 [TBL] [Abstract][Full Text] [Related]
5. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing. Patskovsky S; Latendresse V; Dallaire AM; Doré-Mathieu L; Meunier M Analyst; 2014 Feb; 139(3):596-602. PubMed ID: 24317183 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical impedance spectroscopy in label-free biosensor applications: multivariate data analysis for an objective interpretation. Lindholm-Sethson B; Nyström J; Malmsten M; Ringstad L; Nelson A; Geladi P Anal Bioanal Chem; 2010 Nov; 398(6):2341-9. PubMed ID: 20676616 [TBL] [Abstract][Full Text] [Related]
7. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J; Yang L Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766 [TBL] [Abstract][Full Text] [Related]
8. Impact of Self-Assembled Monolayer Design and Electrochemical Factors on Impedance-Based Biosensing. Brothers MC; Moore D; St Lawrence M; Harris J; Joseph RM; Ratcliff E; Ruiz ON; Glavin N; Kim SS Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316211 [TBL] [Abstract][Full Text] [Related]
10. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology. Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996 [TBL] [Abstract][Full Text] [Related]
11. Detection of bacterial metabolism in lag-phase using impedance spectroscopy of agar-integrated 3D microelectrodes. Butler D; Goel N; Goodnight L; Tadigadapa S; Ebrahimi A Biosens Bioelectron; 2019 Mar; 129():269-276. PubMed ID: 30297173 [TBL] [Abstract][Full Text] [Related]
12. Electrical impedimetric biosensors for liver function detection. Chuang YH; Chang YT; Liu KL; Chang HY; Yew TR Biosens Bioelectron; 2011 Oct; 28(1):368-72. PubMed ID: 21840200 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor. Ward AC; Connolly P; Tucker NP PLoS One; 2014; 9(3):e91732. PubMed ID: 24614411 [TBL] [Abstract][Full Text] [Related]
14. A review of impedance measurements of whole cells. Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290 [TBL] [Abstract][Full Text] [Related]
15. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes. Shi L; Esfandiari L PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations. Korek EM; Teotia R; Herbig D; Brederlow R Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785715 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing. Yoon OJ; Kim I; Sohn IY; Kieu TT; Lee NE J Biomed Mater Res A; 2014 Jul; 102(7):2288-94. PubMed ID: 23894129 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Ehret R; Baumann W; Brischwein M; Schwinde A; Stegbauer K; Wolf B Biosens Bioelectron; 1997; 12(1):29-41. PubMed ID: 8976050 [TBL] [Abstract][Full Text] [Related]
19. Influence of Electrode Connection Tracks on Biological Cell Measurements by Impedance Spectroscopy. Alves de Araujo AL; Claudel J; Kourtiche D; Nadi M Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31247894 [TBL] [Abstract][Full Text] [Related]
20. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Yagati AK; Behrent A; Beck S; Rink S; Goepferich AM; Min J; Lee MH; Baeumner AJ Biosens Bioelectron; 2020 Sep; 164():112272. PubMed ID: 32553348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]