These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2223769)

  • 21. Mutagenesis of cytochromes P450cam and b5.
    Sligar SG; Filipovic D; Stayton PS
    Methods Enzymol; 1991; 206():31-49. PubMed ID: 1784217
    [No Abstract]   [Full Text] [Related]  

  • 22. Inhibitor-induced conformational change in cytochrome P-450CAM.
    Raag R; Li H; Jones BC; Poulos TL
    Biochemistry; 1993 May; 32(17):4571-8. PubMed ID: 8485133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the complexes formed by cytochrome P450cam with cytochrome b5 and putidaredoxin, two effectors of camphor hydroxylase activity.
    Rui L; Pochapsky SS; Pochapsky TC
    Biochemistry; 2006 Mar; 45(12):3887-97. PubMed ID: 16548516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
    Raag R; Poulos TL
    Biochemistry; 1991 Mar; 30(10):2674-84. PubMed ID: 2001355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation, crystal structure, and rearrangement of a cytochrome P-450cam iron-phenyl complex.
    Raag R; Swanson BA; Poulos TL; Ortiz de Montellano PR
    Biochemistry; 1990 Sep; 29(35):8119-26. PubMed ID: 2261467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for Asp-251 in cytochrome P-450cam oxygen activation.
    Gerber NC; Sligar SG
    J Biol Chem; 1994 Feb; 269(6):4260-6. PubMed ID: 8307990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R; Poulos TL
    Biochemistry; 1989 Jan; 28(2):917-22. PubMed ID: 2713354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism of the electron transfer reaction in cytochrome P450(cam)--putidaredoxin: roles of glutamine 360 at the heme proximal site.
    Tosha T; Yoshioka S; Hori H; Takahashi S; Ishimori K; Morishima I
    Biochemistry; 2002 Nov; 41(47):13883-93. PubMed ID: 12437345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutagenesis of a single hydrogen bond in cytochrome P-450 alters cation binding and heme solvation.
    Di Primo C; Hui Bon Hoa G; Douzou P; Sligar S
    J Biol Chem; 1990 Apr; 265(10):5361-3. PubMed ID: 2318818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Putidaredoxin-to-cytochrome P450cam electron transfer: differences between the two reductive steps required for catalysis.
    Kuznetsov VY; Poulos TL; Sevrioukova IF
    Biochemistry; 2006 Oct; 45(39):11934-44. PubMed ID: 17002293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor.
    Di Primo C; Sligar SG; Hoa GH; Douzou P
    FEBS Lett; 1992 Nov; 312(2-3):252-4. PubMed ID: 1426259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary and secondary structural patterns in eukaryotic cytochrome P-450 families correspond to structures of the helix-rich domain of Pseudomonas putida cytochrome P-450cam. Indications for a similar overall topology.
    Ouzounis CA; Melvin WT
    Eur J Biochem; 1991 Jun; 198(2):307-15. PubMed ID: 2040297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational dynamics of cytochrome P-450cam as monitored by photoacoustic calorimetry.
    Di Primo C; Hui Bon Hoa G; Deprez E; Douzou P; Sligar SG
    Biochemistry; 1993 Apr; 32(14):3671-6. PubMed ID: 8466907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Essential role of the Arg112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin.
    Koga H; Sagara Y; Yaoi T; Tsujimura M; Nakamura K; Sekimizu K; Makino R; Shimada H; Ishimura Y; Yura K
    FEBS Lett; 1993 Sep; 331(1-2):109-13. PubMed ID: 8405387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic interaction between NADH-cytochrome b5 reductase and cytochrome b5 studied by site-directed mutagenesis.
    Shirabe K; Nagai T; Yubisui T; Takeshita M
    Biochim Biophys Acta; 1998 Apr; 1384(1):16-22. PubMed ID: 9602031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor.
    Schulze H; Hoa GH; Helms V; Wade RC; Jung C
    Biochemistry; 1996 Nov; 35(45):14127-38. PubMed ID: 8916898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of negatively charged surface residues of putidaredoxin in interactions with redox partners in p450cam monooxygenase system.
    Aoki M; Ishimori K; Morishima I
    Biochim Biophys Acta; 1998 Jul; 1386(1):157-67. PubMed ID: 9675266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate interactions in cytochrome P-450: correlation between carbon-13 nuclear magnetic resonance chemical shifts and C-O vibrational frequencies.
    Legrand N; Bondon A; Simonneaux G; Jung C; Gill E
    FEBS Lett; 1995 May; 364(2):152-6. PubMed ID: 7750560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam.
    Lipscomb JD; Sligar SG; Namtvedt MJ; Gunsalus IC
    J Biol Chem; 1976 Feb; 251(4):1116-24. PubMed ID: 2601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the interactions of putidaredoxin with redox partners in camphor P450 5-monooxygenase by mutagenesis of surface residues.
    Holden M; Mayhew M; Bunk D; Roitberg A; Vilker V
    J Biol Chem; 1997 Aug; 272(35):21720-5. PubMed ID: 9268300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.