These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22237940)

  • 1. Production of finely graded forces in humans: effects of simulated weightlessness by water immersion.
    Dalecki M; Dräger T; Mierau A; Bock O
    Exp Brain Res; 2012 Apr; 218(1):41-7. PubMed ID: 22237940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.
    Dalecki M; Bock O
    Aviat Space Environ Med; 2014 Jun; 85(6):605-11. PubMed ID: 24919380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changed joint position sense and muscle activity in simulated weightlessness by water immersion.
    Dalecki M; Bock O
    Aviat Space Environ Med; 2013 Feb; 84(2):110-5. PubMed ID: 23447848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effects of support-proprioceptive deprivation on visual-manual tracking and vestibular function].
    Kornilova LN; Naumov IA; Glukhikh DO; Khabarova EV; Kozlovskaia IB
    Fiziol Cheloveka; 2013; 39(5):13-24. PubMed ID: 25509868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor performance and haptic support in simulated weightlessness.
    Weber B; Panzirsch M; Stulp F; Schneider S
    Exp Brain Res; 2020 Oct; 238(10):2373-2384. PubMed ID: 32767066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Visual-manual tracking and vestibular function during 7-day dry immersion].
    Kornilova LN; Naumov IA; Mazurenko AIu; Kozlovskaia IB
    Aviakosm Ekolog Med; 2008; 42(5):8-13. PubMed ID: 19192531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical and contractile parameters of muscle in man: effects of 7-day "dry" water immersion.
    Koryak Y
    Aviat Space Environ Med; 1999 May; 70(5):459-64. PubMed ID: 10332940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.
    Bock O; Weigelt C; Bloomberg JJ
    Aviat Space Environ Med; 2010 Sep; 81(9):819-24. PubMed ID: 20824987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive impairment during 5 m water immersion.
    Dalecki M; Bock O; Schulze B
    J Appl Physiol (1985); 2012 Oct; 113(7):1075-81. PubMed ID: 22879536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between vestibular sensitization and leg muscle relaxation under weightlessness simulated by water immersion.
    Mitarai G; Mano T; Yamazaki Y
    Acta Astronaut; 1981; 8(5-6):461-8. PubMed ID: 11542961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrement in manual arm performance during whole body cooling.
    Giesbrecht GG; Bristow GK
    Aviat Space Environ Med; 1992 Dec; 63(12):1077-81. PubMed ID: 1456919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolic effects of physical countermeasures against deficient weight-bearing in an experiment with 7-day immersion].
    Markin AA; Zhuravleva OA; Morukov BV; Zabolotskaia IV; Vostrikova LV; Kuzichkin DS
    Aviakosm Ekolog Med; 2011; 45(4):28-34. PubMed ID: 21970040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Visual-manual tracking during 5-day dry immersion].
    Kornilova LN; Naumov IA; Glukhikh DO
    Aviakosm Ekolog Med; 2011; 45(6):8-12. PubMed ID: 22423486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The water-salt balance and renal function in space flights and in model experiments].
    Morukov BV; Noskov VB; Larina IM; Natochin IuV
    Ross Fiziol Zh Im I M Sechenova; 2003 Mar; 89(3):356-67. PubMed ID: 12968528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity.
    Cornish KG; Hughes K; Dreessen A; Olguin M
    Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Visual–manual tracking after long spaceflight].
    Fiziol Cheloveka; 2016; 42(3):82-93. PubMed ID: 29446899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and electrical changes in human muscle after dry immersion.
    Koryak Y
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):133-40. PubMed ID: 8891511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of a real and simulated weightlessness on characteristics of the static torsional otolith-cervical-ocular reflex].
    Kornilova LN; Naumov IA; Makarova SM
    Fiziol Cheloveka; 2011; 37(1):97-104. PubMed ID: 21469359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.