BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22237955)

  • 1. Photocatalytic reversible amination of α-keto acids on a ZnS surface: implications for the prebiotic metabolism.
    Wang W; Li Q; Yang B; Liu X; Yang Y; Su W
    Chem Commun (Camb); 2012 Feb; 48(15):2146-8. PubMed ID: 22237955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world.
    Guzman MI; Martin ST
    Chem Commun (Camb); 2010 Apr; 46(13):2265-7. PubMed ID: 20234927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photocatalytic performance of ZnS for reversible amination of α-oxo acids by hydrothermal treatment.
    Wang W; Li Q; Liu X; Yang Y; Su W
    Orig Life Evol Biosph; 2012 Aug; 42(4):263-73. PubMed ID: 22638837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving parts of Krebs cycle in reverse through mineral photochemistry.
    Zhang XV; Martin ST
    J Am Chem Soc; 2006 Dec; 128(50):16032-3. PubMed ID: 17165745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Dependent chemoselective synthesis of alpha-amino acids. Reductive amination of alpha-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water.
    Ogo S; Uehara K; Abura T; Fukuzumi S
    J Am Chem Soc; 2004 Mar; 126(10):3020-1. PubMed ID: 15012110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FeS/S/FeS(2) redox system and its oxidoreductase-like chemistry in the iron-sulfur world.
    Wang W; Yang B; Qu Y; Liu X; Su W
    Astrobiology; 2011 Jun; 11(5):471-6. PubMed ID: 21707387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials.
    Hong Y; Zhang J; Wang X; Wang Y; Lin Z; Yu J; Huang F
    Nanoscale; 2012 Apr; 4(9):2859-62. PubMed ID: 22456630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.
    Wen F; Wang X; Huang L; Ma G; Yang J; Li C
    ChemSusChem; 2012 May; 5(5):849-53. PubMed ID: 22539196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light.
    Chen Y; Lu A; Li Y; Zhang L; Yip HY; Zhao H; An T; Wong PK
    Environ Sci Technol; 2011 Jul; 45(13):5689-95. PubMed ID: 21668021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-reductive decolorization of an azo dye by natural sphalerite: case study of a new type of visible light-sensitized photocatalyst.
    Li Y; Lu A; Jin S; Wang C
    J Hazard Mater; 2009 Oct; 170(1):479-86. PubMed ID: 19467780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alloyed (ZnS)x(CuInS2)(1-x) semiconductor nanorods: synthesis, bandgap tuning and photocatalytic properties.
    Ye C; Regulacio MD; Lim SH; Xu QH; Han MY
    Chemistry; 2012 Sep; 18(36):11258-63. PubMed ID: 22865784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation.
    Shipp JA; Gould IR; Shock EL; Williams LB; Hartnett HE
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11642-5. PubMed ID: 25071186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties.
    Yu X; Yu J; Cheng B; Huang B
    Chemistry; 2009 Jul; 15(27):6731-9. PubMed ID: 19499559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPR and optical absorption spectral studies on sphalerite mineral.
    Seshamaheswaramma K; Reddy GU; Reddy AV; Lakshmi Reddy S; Frost RL; Endo T
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):308-12. PubMed ID: 21782499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite.
    Curtis SB; Hewitt J; Macgillivray RT; Dunbar WS
    Biotechnol Bioeng; 2009 Feb; 102(2):644-50. PubMed ID: 18767194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites.
    Franco A; Neves MC; Carrott MM; Mendonça MH; Pereira MI; Monteiro OC
    J Hazard Mater; 2009 Jan; 161(1):545-50. PubMed ID: 18495340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.
    Qi P; Zhang D; Wan Y
    Anal Chim Acta; 2013 Oct; 800():65-70. PubMed ID: 24120169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst.
    Zhang W; Zhong X
    Inorg Chem; 2011 May; 50(9):4065-72. PubMed ID: 21456555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing biocatalytic transformations with CdSe-ZnS QDs.
    Gill R; Freeman R; Xu JP; Willner I; Winograd S; Shweky I; Banin U
    J Am Chem Soc; 2006 Dec; 128(48):15376-7. PubMed ID: 17131995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle.
    Guzman MI; Martin ST
    Astrobiology; 2009 Nov; 9(9):833-42. PubMed ID: 19968461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.