These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2223830)

  • 1. Comparison of the binding of anthracycline derivatives to purified DNA and to cell nuclei.
    Frezard F; Garnier-Suillerot A
    Biochim Biophys Acta; 1990 Nov; 1036(2):121-7. PubMed ID: 2223830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the anthracycline-nuclei interactions in drug-resistant and drug-sensitive K562 cells.
    Tarasiuk J; Garnier-Suillerot A
    Biochem Pharmacol; 1992 Jun; 43(12):2575-80. PubMed ID: 1632816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthracycline incorporation in human lymphocytes. Kinetics of uptake and nuclear concentration.
    Tarasiuk J; Frézard F; Garnier-Suillerot A; Gattegno L
    Biochim Biophys Acta; 1989 Sep; 1013(2):109-17. PubMed ID: 2765536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport mechanisms of anthracycline derivatives in human leukemia cell lines: uptake of pirarubicin, daunorubicin and doxorubicin by K562 and multidrug-resistant K562/ADM cells.
    Nagasawa K; Takara K; Nomiyama M; Ohnishi N; Yokoyama T
    Biol Pharm Bull; 1996 Jul; 19(7):971-6. PubMed ID: 8839972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-containing liposomes as a model for the study of cell membrane permeation by anthracycline derivatives.
    Frezard F; Garnier-Suillerot A
    Biochemistry; 1991 May; 30(20):5038-43. PubMed ID: 2036371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative nuclear and cellular incorporation of daunorubicin, doxorubicin, carminomycin, marcellomycin, aclacinomycin A and AD 32 in daunorubicin-sensitive and -resistant Ehrlich ascites in vitro.
    Seeber S; Loth H; Crooke ST
    J Cancer Res Clin Oncol; 1980; 98(2):109-18. PubMed ID: 6938517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport mechanism of anthracycline derivatives in human leukemia cell lines: uptake and efflux of daunorubicin and doxorubicin in HL60 and its resistant cells and comparison with those of pirarubicin.
    Nagasawa K; Natazuka T; Nomiyama M; Ohnishi N; Yokoyama T
    Biol Pharm Bull; 1996 Jan; 19(1):100-5. PubMed ID: 8820920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic parameters for the uptake of anthracycline by drug-resistant and drug-sensitive K562 cells.
    Tarasiuk J; Garnier-Suillerot A
    Eur J Biochem; 1992 Mar; 204(2):693-8. PubMed ID: 1541282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral shape modifications of anthracyclines bound to cell nuclei: a microspectrofluorometric study.
    Laigle A; Fiallo MM; Garnier-Suillerot A
    Chem Biol Interact; 1996 Jun; 101(1):49-58. PubMed ID: 8665618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P-glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine.
    Frézard F; Pereira-Maia E; Quidu P; Priebe W; Garnier-Suillerot A
    Eur J Biochem; 2001 Mar; 268(6):1561-7. PubMed ID: 11248673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular pharmacokinetics of aclacinomycin A in cultured L1210 cells. Comparison with daunorubicin and doxorubicin.
    Zenebergh A; Baurain R; Trouet A
    Cancer Chemother Pharmacol; 1982; 8(2):243-9. PubMed ID: 6955072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear targeting and nuclear retention of anthracycline-formaldehyde conjugates implicates DNA covalent bonding in the cytotoxic mechanism of anthracyclines.
    Taatjes DJ; Fenick DJ; Koch TH
    Chem Res Toxicol; 1999 Jul; 12(7):588-96. PubMed ID: 10409398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New findings in the study on the intercalation of bisdaunorubicin and its monomeric analogues with naked and nucleus DNA.
    Haj HT; Salerno M; Priebe W; Kozlowski H; Garnier-Suillerot A
    Chem Biol Interact; 2003 Jun; 145(3):349-58. PubMed ID: 12732461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the osmotic active drug concentration in the cytoplasm of anthracycline-resistant and -sensitive K562 cells.
    Frezard F; Garnier-Suillerot A
    Biochim Biophys Acta; 1991 Jan; 1091(1):29-35. PubMed ID: 1995065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [New anthracycline antibiotics and derivatives].
    Tatsuta K
    Gan To Kagaku Ryoho; 1984 Dec; 11(12 Pt 2):2640-52. PubMed ID: 6594977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics of doxorubicin, (2"R)-4'-O-tetrahydropyranyl-adriamycin and aclarubicin.
    Fujita H; Ogawa K; Tone H; Iguchi H; Shomura T; Murata S
    Jpn J Antibiot; 1986 May; 39(5):1321-36. PubMed ID: 3463778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of aclarubicin with DNA as compared with daunorubicin and doxorubicin.
    Ando S; Sasada M; Uchino H; Kagawa D; Ueda T; Nakamura T
    Nihon Gan Chiryo Gakkai Shi; 1986 Dec; 21(10):2343-55. PubMed ID: 3471823
    [No Abstract]   [Full Text] [Related]  

  • 18. Nuclear binding as a determinant of tissue distribution of adriamycin, daunomycin, adriamycinol, daunorubicinol and actinomycin D.
    Terasaki T; Iga T; Sugiyama Y; Sawada Y; Hanano M
    J Pharmacobiodyn; 1984 May; 7(5):269-77. PubMed ID: 6470925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular accumulation and disposition of aclacinomycin A.
    Egorin MJ; Clawson RE; Ross LA; Schlossberger NM; Bachur NR
    Cancer Res; 1979 Nov; 39(11):4396-400. PubMed ID: 498071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser flow cytometric studies on the intracellular fluorescence of anthracyclines.
    Krishan A; Ganapathi R
    Cancer Res; 1980 Nov; 40(11):3895-900. PubMed ID: 6937236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.