These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 22238594)
21. Human βB2-Crystallin Forms a Face-en-Face Dimer in Solution: An Integrated NMR and SAXS Study. Xi Z; Whitley MJ; Gronenborn AM Structure; 2017 Mar; 25(3):496-505. PubMed ID: 28238532 [TBL] [Abstract][Full Text] [Related]
22. Association properties of betaB2- and betaA3-crystallin: ability to form dimers. Hejtmancik JF; Wingfield PT; Chambers C; Russell P; Chen HC; Sergeev YV; Hope JN Protein Eng; 1997 Nov; 10(11):1347-52. PubMed ID: 9514125 [TBL] [Abstract][Full Text] [Related]
23. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Evans P; Slingsby C; Wallace BA Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660 [TBL] [Abstract][Full Text] [Related]
24. Analysis of betaB1-crystallin unfolding equilibrium by spin and fluorescence labeling: evidence of a dimeric intermediate. Koteiche HA; Kumar MS; McHaourab HS FEBS Lett; 2007 May; 581(10):1933-8. PubMed ID: 17448466 [TBL] [Abstract][Full Text] [Related]
25. Deamidation in human lens betaB2-crystallin destabilizes the dimer. Lampi KJ; Amyx KK; Ahmann P; Steel EA Biochemistry; 2006 Mar; 45(10):3146-53. PubMed ID: 16519509 [TBL] [Abstract][Full Text] [Related]
26. Identification of interaction sites between human betaA3- and alphaA/alphaB-crystallins by mammalian two-hybrid and fluorescence resonance energy transfer acceptor photobleaching methods. Gupta R; Srivastava OP J Biol Chem; 2009 Jul; 284(27):18481-92. PubMed ID: 19401464 [TBL] [Abstract][Full Text] [Related]
27. Formation of betaA3/betaB2-crystallin mixed complexes: involvement of N- and C-terminal extensions. Werten PJ; Lindner RA; Carver JA; de Jong WW Biochim Biophys Acta; 1999 Jul; 1432(2):286-92. PubMed ID: 10407150 [TBL] [Abstract][Full Text] [Related]
28. Protein-protein interactions among human lens acidic and basic beta-crystallins. Liu BF; Liang JJ FEBS Lett; 2007 Aug; 581(21):3936-42. PubMed ID: 17662718 [TBL] [Abstract][Full Text] [Related]
29. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
30. Eye lens β-crystallins are predicted by native ion mobility-mass spectrometry and computations to form compact higher-ordered heterooligomers. Rolland AD; Takata T; Donor MT; Lampi KJ; Prell JS Structure; 2023 Sep; 31(9):1052-1064.e3. PubMed ID: 37453416 [TBL] [Abstract][Full Text] [Related]
31. Increasing βB1-crystallin sensitivity to proteolysis caused by the congenital cataract-microcornea syndrome mutation S129R. Wang S; Zhao WJ; Liu H; Gong H; Yan YB Biochim Biophys Acta; 2013 Feb; 1832(2):302-11. PubMed ID: 23159606 [TBL] [Abstract][Full Text] [Related]
32. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
33. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. Takata T; Oxford JT; Brandon TR; Lampi KJ Biochemistry; 2007 Jul; 46(30):8861-71. PubMed ID: 17616172 [TBL] [Abstract][Full Text] [Related]
34. Oligomerization and phase transitions in aqueous solutions of native and truncated human beta B1-crystallin. Annunziata O; Pande A; Pande J; Ogun O; Lubsen NH; Benedek GB Biochemistry; 2005 Feb; 44(4):1316-28. PubMed ID: 15667225 [TBL] [Abstract][Full Text] [Related]
35. Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. Harsolia RS; Kanwar A; Gour S; Kumar V; Kumar V; Bansal R; Kumar S; Singh M; Yadav JK Int J Biol Macromol; 2020 Nov; 163():702-710. PubMed ID: 32650012 [TBL] [Abstract][Full Text] [Related]
36. The expression of αA- and βB1-crystallin during normal development and regeneration, and proteomic analysis for the regenerating lens in Xenopus laevis. Zhao Y; Ju F; Zhao Y; Wang L; Sun Z; Liu M; Gao L Mol Vis; 2011 Mar; 17():768-78. PubMed ID: 21527991 [TBL] [Abstract][Full Text] [Related]
37. Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Michiel M; Duprat E; Skouri-Panet F; Lampi JA; Tardieu A; Lampi KJ; Finet S Exp Eye Res; 2010 Jun; 90(6):688-98. PubMed ID: 20188088 [TBL] [Abstract][Full Text] [Related]
38. Binding of destabilized betaB2-crystallin mutants to alpha-crystallin: the role of a folding intermediate. Sathish HA; Koteiche HA; McHaourab HS J Biol Chem; 2004 Apr; 279(16):16425-32. PubMed ID: 14761939 [TBL] [Abstract][Full Text] [Related]
39. Decreasing the homodimer interaction: a common mechanism shared by the deltaG91 mutation and deamidation in betaA3-crystallin. Xu J; Wong C; Tan X; Jing H; Zhou G; Song W Mol Vis; 2010 Mar; 16():438-44. PubMed ID: 20300566 [TBL] [Abstract][Full Text] [Related]
40. The importance of the last strand at the C-terminus in βB2-crystallin stability and assembly. Zhang K; Zhao WJ; Leng XY; Wang S; Yao K; Yan YB Biochim Biophys Acta; 2014 Jan; 1842(1):44-55. PubMed ID: 24120835 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]