BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 22238673)

  • 1. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.
    Walker SL; Ariga J; Mathias JR; Coothankandaswamy V; Xie X; Distel M; Köster RW; Parsons MJ; Bhalla KN; Saxena MT; Mumm JS
    PLoS One; 2012; 7(1):e29916. PubMed ID: 22238673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass.
    Wang G; Rajpurohit SK; Delaspre F; Walker SL; White DT; Ceasrine A; Kuruvilla R; Li RJ; Shim JS; Liu JO; Parsons MJ; Mumm JS
    Elife; 2015 Jul; 4():. PubMed ID: 26218223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated image-based phenotypic analysis in zebrafish embryos.
    Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA
    Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Automated Chemical Screens in Zebrafish.
    Saydmohammed M; Tsang M
    Methods Mol Biol; 2018; 1683():383-393. PubMed ID: 29082504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo imaging of mitochondria in intact zebrafish larvae.
    Paquet D; Plucińska G; Misgeld T
    Methods Enzymol; 2014; 547():151-64. PubMed ID: 25416357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile, automated and high-throughput drug screening platform for zebrafish embryos.
    Lubin A; Otterstrom J; Hoade Y; Bjedov I; Stead E; Whelan M; Gestri G; Paran Y; Payne E
    Biol Open; 2021 Sep; 10(9):. PubMed ID: 34472582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Analysis of Heterogeneity to Increase the Information Content Extracted from Fluorescence Micrographs of Transgenic Zebrafish Embryos.
    Shun T; Gough AH; Sanker S; Hukriede NA; Vogt A
    Assay Drug Dev Technol; 2017; 15(6):257-266. PubMed ID: 28800244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.
    Liu R; Lin S; Rallo R; Zhao Y; Damoiseaux R; Xia T; Lin S; Nel A; Cohen Y
    PLoS One; 2012; 7(4):e35014. PubMed ID: 22506062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated feature detection and imaging for high-resolution screening of zebrafish embryos.
    Peravali R; Gehrig J; Giselbrecht S; Lütjohann DS; Hadzhiev Y; Müller F; Liebel U
    Biotechniques; 2011 May; 50(5):319-24. PubMed ID: 21548893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput screening and biosensing with fluorescent C. elegans strains.
    Leung CK; Deonarine A; Strange K; Choe KP
    J Vis Exp; 2011 May; (51):. PubMed ID: 21633332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of yellow catfish β-actin promoter and generation of transgenic yellow catfish expressing enhanced yellow fluorescent protein.
    Ge J; Dong Z; Li J; Xu Z; Song W; Bao J; Liang D; Li J; Li K; Jia W; Zhao M; Cai Y; Yang J; Pan J; Zhao Q
    Transgenic Res; 2012 Oct; 21(5):995-1004. PubMed ID: 22407406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated prior knowledge-based quantification of neuronal patterns in the spinal cord of zebrafish.
    Stegmaier J; Shahid M; Takamiya M; Yang L; Rastegar S; Reischl M; Strähle U; Mikut R
    Bioinformatics; 2014 Mar; 30(5):726-33. PubMed ID: 24135262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries.
    Lessman CA
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):268-80. PubMed ID: 21932435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish.
    Wittmann C; Reischl M; Shah AH; Mikut R; Liebel U; Grabher C
    J Vis Exp; 2012 Jul; (65):e4203. PubMed ID: 22825322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena.
    Cho YS; Lee SY; Kim YK; Kim DS; Nam YK
    Transgenic Res; 2011 Dec; 20(6):1333-55. PubMed ID: 21437716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos.
    Raftery TD; Isales GM; Yozzo KL; Volz DC
    Environ Sci Technol; 2014; 48(1):804-10. PubMed ID: 24328182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of zebrafish somites based on PDE method.
    Lu J; Wu T; Liu T; Chen C; Zhao C; Yang J
    J Microsc; 2012 Nov; 248(2):156-62. PubMed ID: 22957990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination.
    Preston MA; Finseth LT; Bourne JN; Macklin WB
    Glia; 2019 Apr; 67(4):650-667. PubMed ID: 30623975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.