BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22239072)

  • 1. Multinode acoustic focusing for parallel flow cytometry.
    Piyasena ME; Austin Suthanthiraraj PP; Applegate RW; Goumas AM; Woods TA; López GP; Graves SW
    Anal Chem; 2012 Feb; 84(4):1831-9. PubMed ID: 22239072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.
    Kalb DM; Fencl FA; Woods TA; Swanson A; Maestas GC; Juárez JJ; Edwards BS; Shreve AP; Graves SW
    Anal Chem; 2017 Sep; 89(18):9967-9975. PubMed ID: 28823146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intersection of flow cytometry with microfluidics and microfabrication.
    Piyasena ME; Graves SW
    Lab Chip; 2014 Mar; 14(6):1044-59. PubMed ID: 24488050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined HIV-1 protein bead array for serology assay and T-cell subset immunophenotyping with a hybrid flow cytometer: a step in the direction of a comprehensive multitasking instrument platform for infectious disease diagnosis and monitoring.
    Faucher S; Martel A; Sherring A; Bogdanovic D; Malloch L; Kim JE; Bergeron M; Sandstrom P; Mandy FF
    Cytometry B Clin Cytom; 2006 May; 70(3):179-88. PubMed ID: 16615079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical performance of an ultrasonic particle focusing flow cytometer.
    Goddard GR; Sanders CK; Martin JC; Kaduchak G; Graves SW
    Anal Chem; 2007 Nov; 79(22):8740-6. PubMed ID: 17924647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration.
    Grenvall C; Antfolk C; Bisgaard CZ; Laurell T
    Lab Chip; 2014 Dec; 14(24):4629-37. PubMed ID: 25300357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise CD4 T-cell counting using red diode laser excitation: for richer, for poorer.
    Janossy G; Jani IV; Kahan M; Barnett D; Mandy F; Shapiro H
    Cytometry; 2002 Apr; 50(2):78-85. PubMed ID: 12116349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluidics.
    Austin Suthanthiraraj PP; Graves SW
    Curr Protoc Cytom; 2013 Jul; Chapter 1():1.2.1-1.2.14. PubMed ID: 23835801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.
    Schmid L; Weitz DA; Franke T
    Lab Chip; 2014 Oct; 14(19):3710-8. PubMed ID: 25031157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing.
    Li Z; Li P; Xu J; Shao W; Yang C; Cui Y
    Biomed Microdevices; 2020 Mar; 22(2):27. PubMed ID: 32222836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfabricated multiple field of view imaging flow cytometry.
    Schonbrun E; Gorthi SS; Schaak D
    Lab Chip; 2012 Jan; 12(2):268-73. PubMed ID: 22037643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of microparticles in next-generation assays for microflow cytometers.
    Kim JS; Ligler FS
    Anal Bioanal Chem; 2010 Nov; 398(6):2373-82. PubMed ID: 20526882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion channel for microchip flow cytometers.
    Bang H; Yun H; Lee WG; Park J; Lee J; Chung S; Cho K; Chung C; Han DC; Chang JK
    Lab Chip; 2006 Oct; 6(10):1381-3. PubMed ID: 17102853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.