These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of a general time-dependent absorbing potential for the constrained adiabatic trajectory method. Leclerc A; Jolicard G; Killingbeck JP J Chem Phys; 2011 May; 134(19):194111. PubMed ID: 21599048 [TBL] [Abstract][Full Text] [Related]
3. Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian. Kormann K; Holmgren S; Karlsson HO J Chem Phys; 2008 May; 128(18):184101. PubMed ID: 18532793 [TBL] [Abstract][Full Text] [Related]
4. Quantum Dynamics with Explicitly Time-Dependent Hamiltonians in Multiple Time Scales: A New Algorithm for ( Raj P; Gugalia A; Balanarayan P J Chem Theory Comput; 2020 Jan; 16(1):35-50. PubMed ID: 31765136 [TBL] [Abstract][Full Text] [Related]
5. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. Ndong M; Tal-Ezer H; Kosloff R; Koch CP J Chem Phys; 2010 Feb; 132(6):064105. PubMed ID: 20151731 [TBL] [Abstract][Full Text] [Related]
6. Propagators for the time-dependent Kohn-Sham equations. Castro A; Marques MA; Rubio A J Chem Phys; 2004 Aug; 121(8):3425-33. PubMed ID: 15303905 [TBL] [Abstract][Full Text] [Related]
7. Operator-based triple-mode Floquet theory in solid-state NMR. Scholz I; Meier BH; Ernst M J Chem Phys; 2007 Nov; 127(20):204504. PubMed ID: 18052439 [TBL] [Abstract][Full Text] [Related]
8. Superadiabaticity in magnetic resonance. Deschamps M; Kervern G; Massiot D; Pintacuda G; Emsley L; Grandinetti PJ J Chem Phys; 2008 Nov; 129(20):204110. PubMed ID: 19045855 [TBL] [Abstract][Full Text] [Related]
9. Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations. Puzari P; Sarkar B; Adhikari S J Chem Phys; 2004 Jul; 121(2):707-21. PubMed ID: 15260597 [TBL] [Abstract][Full Text] [Related]
10. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster. Kumar Paul A; Sardar S; Sarkar B; Adhikari S J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886 [TBL] [Abstract][Full Text] [Related]
11. A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion. Lauvergnat D; Blasco S; Chapuisat X; Nauts A J Chem Phys; 2007 May; 126(20):204103. PubMed ID: 17552750 [TBL] [Abstract][Full Text] [Related]
12. Calculating eigenvalues and eigenvectors of parameter-dependent Hamiltonians using an adaptative wave operator method. Leclerc A; Jolicard G J Chem Phys; 2020 May; 152(20):204107. PubMed ID: 32486663 [TBL] [Abstract][Full Text] [Related]
13. Efficient calculation of time- and frequency-resolved four-wave-mixing signals. Gelin MF; Egorova D; Domcke W Acc Chem Res; 2009 Sep; 42(9):1290-8. PubMed ID: 19449854 [TBL] [Abstract][Full Text] [Related]
14. Nonvariational time-dependent multiconfiguration self-consistent field equations for electronic dynamics in laser-driven molecules. Nguyen-Dang TT; Peters M; Wang SM; Sinelnikov E; Dion F J Chem Phys; 2007 Nov; 127(17):174107. PubMed ID: 17994807 [TBL] [Abstract][Full Text] [Related]
15. Efficient geometric integrators for nonadiabatic quantum dynamics. I. The adiabatic representation. Choi S; Vaníček J J Chem Phys; 2019 May; 150(20):204112. PubMed ID: 31153205 [TBL] [Abstract][Full Text] [Related]
16. On the numerical solution of the exact factorization equations. Gossel GH; Lacombe L; Maitra NT J Chem Phys; 2019 Apr; 150(15):154112. PubMed ID: 31005081 [TBL] [Abstract][Full Text] [Related]
17. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method. Ishikawa A; Nakashima H; Nakatsuji H J Chem Phys; 2008 Mar; 128(12):124103. PubMed ID: 18376904 [TBL] [Abstract][Full Text] [Related]
18. On the proper derivation of the Floquet-based quantum classical Liouville equation and surface hopping describing a molecule or material subject to an external field. Chen HT; Zhou Z; Subotnik JE J Chem Phys; 2020 Jul; 153(4):044116. PubMed ID: 32752688 [TBL] [Abstract][Full Text] [Related]
19. Theory of three-dimensional alignment by intense laser pulses. Artamonov M; Seideman T J Chem Phys; 2008 Apr; 128(15):154313. PubMed ID: 18433215 [TBL] [Abstract][Full Text] [Related]
20. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method. Acevedo R; Lombardini R; Turner MA; Kinsey JL; Johnson BR J Chem Phys; 2008 Feb; 128(6):064103. PubMed ID: 18282024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]