BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 22239770)

  • 1. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.
    Olejniczak M; Bast R; Saue T; Pecul M
    J Chem Phys; 2012 Jan; 136(1):014108. PubMed ID: 22239770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct perturbation theory in terms of energy derivatives: scalar-relativistic treatment up to sixth order.
    Schwalbach W; Stopkowicz S; Cheng L; Gauss J
    J Chem Phys; 2011 Nov; 135(19):194114. PubMed ID: 22112073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach.
    Ruiz de Azúa M; Giribet CG; Melo JI
    J Chem Phys; 2011 Jan; 134(3):034123. PubMed ID: 21261346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals.
    Autschbach J
    J Chem Phys; 2008 Apr; 128(16):164112. PubMed ID: 18447426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I.
    Moncho S; Autschbach J
    Magn Reson Chem; 2010 Dec; 48 Suppl 1():S76-85. PubMed ID: 20586110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach.
    Melo JI; Ruiz de Azua MC; Giribet CG; Aucar GA; Provasi PF
    J Chem Phys; 2004 Oct; 121(14):6798-808. PubMed ID: 15473737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTAIM analysis of the HF, HCl, HBr, and HOH elimination reactions of halohydrocarbons and halohydroalcohols.
    Parworth CL; Tucker MK; Holmes BE; Heard GL
    J Phys Chem A; 2011 Nov; 115(45):13133-8. PubMed ID: 21967599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon and proton shielding tensors in methyl halides.
    Kantola AM; Lantto P; Vaara J; Jokisaari J
    Phys Chem Chem Phys; 2010 Mar; 12(11):2679-92. PubMed ID: 20200746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.
    Aucar IA; Gómez SS; Melo JI; Giribet CC; Ruiz de Azúa MC
    J Chem Phys; 2013 Apr; 138(13):134107. PubMed ID: 23574208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.