These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22239799)

  • 1. An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: application to DNA flowing through a nanoslit with embedded nanopits.
    Zhang Y; de Pablo JJ; Graham MD
    J Chem Phys; 2012 Jan; 136(1):014901. PubMed ID: 22239799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N log N method for hydrodynamic interactions of confined polymer systems: Brownian dynamics.
    Hernández-Ortiz JP; de Pablo JJ; Graham MD
    J Chem Phys; 2006 Oct; 125(16):164906. PubMed ID: 17092138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel O(N) Stokes' solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries.
    Zhao X; Li J; Jiang X; Karpeev D; Heinonen O; Smith B; Hernandez-Ortiz JP; de Pablo JJ
    J Chem Phys; 2017 Jun; 146(24):244114. PubMed ID: 28668032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
    Geyer T; Winter U
    J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tethered DNA dynamics in shear flow.
    Zhang Y; Donev A; Weisgraber T; Alder BJ; Graham MD; de Pablo JJ
    J Chem Phys; 2009 Jun; 130(23):234902. PubMed ID: 19548751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational dynamics of lambda-DNA in the anti-Brownian electrokinetic trap: Brownian dynamics and Monte Carlo simulation.
    Dambal A; Shaqfeh ES
    J Chem Phys; 2009 Dec; 131(22):224905. PubMed ID: 20001082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.
    Berk Usta O; Ladd AJ; Butler JE
    J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions.
    Jain A; Sunthar P; Dünweg B; Prakash JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066703. PubMed ID: 23005239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.
    Guo J; Li X; Liu Y; Liang H
    J Chem Phys; 2011 Apr; 134(13):134906. PubMed ID: 21476773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A penalty method to model particle interactions in DNA-laden flows.
    Trebotich D; Miller GH; Bybee MD
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of intramolecular reactions of polymers: an efficient method based on Brownian dynamics simulations.
    Klenin KV; Langowski J
    J Chem Phys; 2004 Sep; 121(10):4951-60. PubMed ID: 15332931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular dynamics in crowded environments.
    Echeverria C; Kapral R
    J Chem Phys; 2010 Mar; 132(10):104902. PubMed ID: 20232985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Brownian dynamics simulation of DNA molecules with hydrodynamic interactions in linear flows.
    Fu SP; Young YN; Jiang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063008. PubMed ID: 26172793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A boundary element method/Brownian dynamics approach for simulating DNA electrophoresis in electrically insulating microfabricated devices.
    Cho J; Kenward M; Dorfman KD
    Electrophoresis; 2009 May; 30(9):1482-9. PubMed ID: 19350540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions.
    Butler JE; Shaqfeh ES
    J Chem Phys; 2005 Jan; 122(1):14901. PubMed ID: 15638694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional Brownian diffusion of rod-like macromolecules in the presence of randomly distributed spherical obstacles: molecular dynamics simulation.
    Sakha F; Fazli H
    J Chem Phys; 2010 Dec; 133(23):234904. PubMed ID: 21186888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single molecule study of DNA collision with elliptical nanoposts conveyed by hydrodynamics.
    Viero Y; He Q; Fouet M; Bancaud A
    Electrophoresis; 2013 Dec; 34(24):3300-4. PubMed ID: 24310856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoscale hydrodynamic simulation of short polyelectrolytes in electric fields.
    Frank S; Winkler RG
    J Chem Phys; 2009 Dec; 131(23):234905. PubMed ID: 20025346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.