BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22239984)

  • 1. Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction.
    Lee CF; Chang CL; Yang JC; Lai HY; Chen CH
    J Colloid Interface Sci; 2012 Mar; 369(1):129-33. PubMed ID: 22239984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties.
    Couto GG; Klein JJ; Schreiner WH; Mosca DH; de Oliveira AJ; Zarbin AJ
    J Colloid Interface Sci; 2007 Jul; 311(2):461-8. PubMed ID: 17433349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition.
    Radi A; Pradhan D; Sohn Y; Leung KT
    ACS Nano; 2010 Mar; 4(3):1553-60. PubMed ID: 20166698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of eigensymmetries of face forms to X-ray diffraction intensities of crystals twinned by 'reticular merohedry'.
    Klapper H; Hahn T
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):82-109. PubMed ID: 22186286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric frustration of icosahedron in metallic glasses.
    Hirata A; Kang LJ; Fujita T; Klumov B; Matsue K; Kotani M; Yavari AR; Chen MW
    Science; 2013 Jul; 341(6144):376-9. PubMed ID: 23845945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate.
    Ganesh Babu MM; Gunasekaran P
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):191-5. PubMed ID: 19660920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles.
    Ma J; Tai G; Guo W
    Ultrason Sonochem; 2010 Mar; 17(3):534-40. PubMed ID: 20006938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles.
    Teng X; Yang H
    J Am Chem Soc; 2003 Nov; 125(47):14559-63. PubMed ID: 14624605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic imaging of oxide-supported metallic nanocrystals.
    Feng Z; Kazimirov A; Bedzyk MJ
    ACS Nano; 2011 Dec; 5(12):9755-60. PubMed ID: 22032686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEM study of the structural dependence of the epitaxial passive oxide films on crystal facets in polyhedral nanoparticles of chromium.
    Rao JC; Zhang XX; Qin B; Fung KK
    Ultramicroscopy; 2004 Jan; 98(2-4):231-8. PubMed ID: 15046803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm.
    Barnard AS; Curtiss LA
    Chemphyschem; 2006 Jul; 7(7):1544-53. PubMed ID: 16755641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction.
    Li Z; Okasinski JS; Almer JD; Ren Y; Zuo X; Sun Y
    Nanoscale; 2014 Jan; 6(1):365-70. PubMed ID: 24201971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic alloying of preformed gold and silver nanoparticles.
    Radziuk DV; Zhang W; Shchukin D; Möhwald H
    Small; 2010 Feb; 6(4):545-53. PubMed ID: 20108230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature.
    Noruzi M; Zare D; Khoshnevisan K; Davoodi D
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1461-5. PubMed ID: 21616704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.
    Huang PX; Wu F; Zhu BL; Li GR; Wang YL; Gao XP; Zhu HY; Yan TY; Huang WP; Zhang SM; Song DY
    J Phys Chem B; 2006 Feb; 110(4):1614-20. PubMed ID: 16471724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-micrometer-sized metal tubes from electrospun fiber templates.
    Ochanda F; Jones WE
    Langmuir; 2005 Nov; 21(23):10791-6. PubMed ID: 16262353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate.
    Vigneshwaran N; Kathe AA; Varadarajan PV; Nachane RP; Balasubramanya RH
    Langmuir; 2007 Jun; 23(13):7113-7. PubMed ID: 17518485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach.
    Jha AK; Prasad K; Prasad K
    Biotechnol J; 2009 Nov; 4(11):1582-5. PubMed ID: 19844916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.