These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 22240385)
1. Investigation of critical shear stress with simultaneous measurement of electrical impedance, capacitance and light backscattering. Lee BK; Ko JY; Lim HJ; Nam JH; Shin S Clin Hemorheol Microcirc; 2012; 51(3):203-12. PubMed ID: 22240385 [TBL] [Abstract][Full Text] [Related]
2. Time course of electrical impedance during red blood cell aggregation in a glass tube: comparison with light transmittance. Baskurt OK; Uyuklu M; Meiselman HJ IEEE Trans Biomed Eng; 2010 Apr; 57(4):969-78. PubMed ID: 19932990 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous monitoring of electrical conductance and light transmittance during red blood cell aggregation. Baskurt OK; Uyuklu M; Meiselman HJ Biorheology; 2009; 46(3):239-49. PubMed ID: 19581730 [TBL] [Abstract][Full Text] [Related]
4. Study of erythrocyte aggregation at pulsatile flow conditions with backscattering analysis. Nam JH; Xue S; Lim H; Shin S Clin Hemorheol Microcirc; 2012; 50(4):257-66. PubMed ID: 22240363 [TBL] [Abstract][Full Text] [Related]
5. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution. Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888 [TBL] [Abstract][Full Text] [Related]
6. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance. Pribush A; Meyerstein D; Meyerstein N Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887 [TBL] [Abstract][Full Text] [Related]
7. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood. Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548 [TBL] [Abstract][Full Text] [Related]
8. Measurement of red blood cell aggregation in a "plate-plate" shearing system by analysis of light transmission. Baskurt OK; Meiselman HJ; Kayar E Clin Hemorheol Microcirc; 1998 Dec; 19(4):307-14. PubMed ID: 9972668 [TBL] [Abstract][Full Text] [Related]
9. Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method. Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N Biorheology; 1999; 36(5-6):411-23. PubMed ID: 10818639 [TBL] [Abstract][Full Text] [Related]
10. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation. Antonova N; Riha P; Ivanov I Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112 [TBL] [Abstract][Full Text] [Related]
11. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation. Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529 [TBL] [Abstract][Full Text] [Related]
12. Red blood cell deformability and aggregation behaviour in different animal species. Plasenzotti R; Stoiber B; Posch M; Windberger U Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945 [TBL] [Abstract][Full Text] [Related]
13. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation. Lim HJ; Nam JH; Lee YJ; Shin S Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972 [TBL] [Abstract][Full Text] [Related]
14. Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods. Marton Z; Kesmarky G; Vekasi J; Cser A; Russai R; Horvath B; Toth K Clin Hemorheol Microcirc; 2001; 24(2):75-83. PubMed ID: 11381182 [TBL] [Abstract][Full Text] [Related]
15. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent. Antonova N; Riha P; Ivanov I Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907 [TBL] [Abstract][Full Text] [Related]
16. The role of critical shear stress on acute coronary syndrome. Kim J; Chung H; Cho M; Lee BK; Karimi A; Shin S Clin Hemorheol Microcirc; 2013; 55(1):101-9. PubMed ID: 23445628 [TBL] [Abstract][Full Text] [Related]
17. Shear-dependent aggregation characteristics of red blood cells in a pressure-driven microfluidic channel. Shin S; Park MS; Ku YH; Suh JS Clin Hemorheol Microcirc; 2006; 34(1-2):353-61. PubMed ID: 16543657 [TBL] [Abstract][Full Text] [Related]
18. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology. Antonova N; Riha P; Ivanov I; Gluhcheva Y Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715 [TBL] [Abstract][Full Text] [Related]
19. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178 [TBL] [Abstract][Full Text] [Related]
20. Rheological properties of erythrocytes in patients suffering from erysipelas. Examination with LORCA device. Biesiada G; Krzemień J; Czepiel J; Teległów A; Dabrowski Z; Spodaryk K; Mach T Clin Hemorheol Microcirc; 2006; 34(3):383-90. PubMed ID: 16614462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]