These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22240385)

  • 21. Blood banking-induced alteration of red blood cell flow properties.
    Relevy H; Koshkaryev A; Manny N; Yedgar S; Barshtein G
    Transfusion; 2008 Jan; 48(1):136-46. PubMed ID: 17900281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of erythrocyte aggregation in the abnormal hemorheology of multiple myeloma patients.
    Pribush A; Hatskelzon L; Mazor D; Katorza E; Zilberman-Kravits D; Meyerstein N
    Clin Hemorheol Microcirc; 2006; 34(4):529-36. PubMed ID: 16687792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of shear stress preventing red blood cells aggregation at the individual cell level: The temperature dependence.
    Lee K; Priezzhev A; Shin S; Yaya F; Meglinski I
    Clin Hemorheol Microcirc; 2016; 64(4):853-857. PubMed ID: 27767973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress.
    Lee BK; Alexy T; Wenby RB; Meiselman HJ
    Biorheology; 2007; 44(1):29-35. PubMed ID: 17502687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel technique for quantification of erythrocyte aggregation abnormalities in pathophysiological situations.
    Pribush A; Hatzkelson L; Meyerstein D; Meyerstein N
    Clin Hemorheol Microcirc; 2007; 36(2):121-32. PubMed ID: 17325436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transient, microfluidic approach to the investigation of erythrocyte aggregation: the threshold shear-stress for erythrocyte disaggregation.
    Shin S; Nam JH; Hou JX; Suh JS
    Clin Hemorheol Microcirc; 2009; 42(2):117-25. PubMed ID: 19433885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer.
    Lim H; Nam J; Xue S; Shin S
    Clin Hemorheol Microcirc; 2011; 47(3):211-8. PubMed ID: 21498900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of red blood cell aggregation in disposable capillary tubes.
    Baskurt OK; Uyuklu M; Ozdem S; Meiselman HJ
    Clin Hemorheol Microcirc; 2011; 47(4):295-305. PubMed ID: 21654059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast response characteristics of red blood cell aggregation.
    Kaliviotis E; Yianneskis M
    Biorheology; 2008; 45(6):639-49. PubMed ID: 19065011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sublethal mechanical trauma alters the electrochemical properties and increases aggregation of erythrocytes.
    McNamee AP; Tansley GD; Simmonds MJ
    Microvasc Res; 2018 Nov; 120():1-7. PubMed ID: 29803580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological properties of fetal red cells with special reference to aggregability and disaggregability analyzed by light transmission and laser backscattering techniques.
    El Bouhmadi A; Boulot P; Laffargue F; Brun JF
    Clin Hemorheol Microcirc; 2000; 22(2):79-90. PubMed ID: 10831059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects.
    Picart C; Piau JM; Galliard H; Carpentier P
    Biorheology; 1998; 35(4-5):335-53. PubMed ID: 10474659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameterization of red blood cell elongation index--shear stress curves obtained by ektacytometry.
    Baskurt OK; Hardeman MR; Uyuklu M; Ulker P; Cengiz M; Nemeth N; Shin S; Alexy T; Meiselman HJ
    Scand J Clin Lab Invest; 2009; 69(7):777-88. PubMed ID: 19929721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound.
    Amararene A; Cloutier G
    Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of hemoglobin oxygenation level on red blood cell deformability and aggregation parameters.
    Uyuklu M; Meiselman HJ; Baskurt OK
    Clin Hemorheol Microcirc; 2009; 41(3):179-88. PubMed ID: 19276515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity of the ultrasonic interferometry method (Echo-Cell) to changes of red cell aggregation: application to diabetes.
    Khodabandehlou T; Boynard M; Guillet R; Devehat CL
    Clin Hemorheol Microcirc; 2002; 27(3-4):219-32. PubMed ID: 12454379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.