These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 22240397)
1. Type IV fimbrial subunit protein ApfA contributes to protection against porcine pleuropneumonia. Sadilkova L; Nepereny J; Vrzal V; Sebo P; Osicka R Vet Res; 2012 Jan; 43(1):2. PubMed ID: 22240397 [TBL] [Abstract][Full Text] [Related]
2. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. Zhou Y; Li L; Chen Z; Yuan H; Chen H; Zhou R Clin Vaccine Immunol; 2013 Feb; 20(2):287-94. PubMed ID: 23269417 [TBL] [Abstract][Full Text] [Related]
3. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Lu YC; Li MC; Chen YM; Chu CY; Lin SF; Yang WJ Vaccine; 2011 Oct; 29(44):7740-6. PubMed ID: 21835218 [TBL] [Abstract][Full Text] [Related]
4. Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection. Maas A; Meens J; Baltes N; Hennig-Pauka I; Gerlach GF Vaccine; 2006 Nov; 24(49-50):7226-37. PubMed ID: 17027123 [TBL] [Abstract][Full Text] [Related]
5. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs. Shin MK; Kang ML; Jung MH; Cha SB; Lee WJ; Kim JM; Kim DH; Yoo HS Vet Immunol Immunopathol; 2013 Jan; 151(1-2):132-9. PubMed ID: 23206402 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of multicomponent recombinant vaccines against Actinobacillus pleuropneumoniae in mice. Shao M; Wang Y; Wang C; Guo Y; Peng Y; Liu J; Li G; Liu H; Liu S Acta Vet Scand; 2010 Sep; 52(1):52. PubMed ID: 20831818 [TBL] [Abstract][Full Text] [Related]
7. In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae. Antenucci F; Fougeroux C; Deeney A; Ørskov C; Rycroft A; Holst PJ; Bojesen AM Vet Res; 2018 Jan; 49(1):4. PubMed ID: 29316978 [TBL] [Abstract][Full Text] [Related]
8. Nasal immunization with major epitope-containing ApxIIA toxin fragment induces protective immunity against challenge infection with Actinobacillus pleuropneumoniae in a murine model. Seo KW; Kim SH; Park J; Son Y; Yoo HS; Lee KY; Jang YS Vet Immunol Immunopathol; 2013 Jan; 151(1-2):102-12. PubMed ID: 23200821 [TBL] [Abstract][Full Text] [Related]
9. Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model. Park J; Seo KW; Kim SH; Lee HY; Kim B; Lim CW; Kim JH; Yoo HS; Jang YS Vet Microbiol; 2015 May; 177(1-2):142-53. PubMed ID: 25818577 [TBL] [Abstract][Full Text] [Related]
10. Attenuation of Actinobacillus pleuropneumoniae by inactivation of aroQ. Ingham A; Zhang Y; Prideaux C Vet Microbiol; 2002 Jan; 84(3):263-73. PubMed ID: 11731178 [TBL] [Abstract][Full Text] [Related]
11. Risk assessment of transmission of capsule-deficient, recombinant Actinobacillus pleuropneumoniae. Inzana TJ; Glindemann G; Fenwick B; Longstreth J; Ward D Vet Microbiol; 2004 Nov; 104(1-2):63-71. PubMed ID: 15530740 [TBL] [Abstract][Full Text] [Related]
12. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Loera-Muro A; Angulo C Vet Microbiol; 2018 Apr; 217():66-75. PubMed ID: 29615259 [TBL] [Abstract][Full Text] [Related]
13. Protective efficacy of an affinity-purified hemolysin vaccine against experimental swine pleuropneumonia. Haga Y; Ogino S; Ohashi S; Ajito T; Hashimoto K; Sawada T J Vet Med Sci; 1997 Feb; 59(2):115-20. PubMed ID: 9070983 [TBL] [Abstract][Full Text] [Related]
14. Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Chiang CH; Huang WF; Huang LP; Lin SF; Yang WJ Vaccine; 2009 Jul; 27(34):4565-70. PubMed ID: 19520199 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar 1 and 15 in the protection provided by sub-unit and live streptomycin-dependent pleuropneumonia vaccines. Tumamao JQ; Bowles RE; van den Bosch H; Klaasen HL; Fenwick BW; Blackall PJ Aust Vet J; 2004 Dec; 82(12):773-80. PubMed ID: 15648941 [TBL] [Abstract][Full Text] [Related]
16. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Xu F; Chen X; Shi A; Yang B; Wang J; Li Y; Guo X; Blackall PJ; Yang H Vet Microbiol; 2006 Dec; 118(3-4):230-9. PubMed ID: 16930871 [TBL] [Abstract][Full Text] [Related]
17. [Construction and characterization of Actinobacillus pleuropneumoniae serovar 7 live attenuated vaccine strain co-expressing ApxIA]. Liu J; Chen Y; Hu L; Bei W; Chen H Sheng Wu Gong Cheng Xue Bao; 2010 Mar; 26(3):305-10. PubMed ID: 20518341 [TBL] [Abstract][Full Text] [Related]
18. Oral immunization with lung-pathogenic bacteria is protective against defined challenge in a pig aerosol infection model. Hensel A; Delventhal S; Windt H; Stockhofe-Zurwieden N; Pabst R; Petzoldt K Adv Exp Med Biol; 1995; 371B():803-6. PubMed ID: 7502901 [No Abstract] [Full Text] [Related]
19. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae. Yuan F; Liu J; Guo Y; Tan C; Fu S; Zhao J; Chen H; Bei W Curr Microbiol; 2011 Dec; 63(6):574-80. PubMed ID: 21964939 [TBL] [Abstract][Full Text] [Related]
20. Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. Zhang F; Zhao Q; Quan K; Zhu Z; Yang Y; Wen X; Chang YF; Huang X; Wu R; Wen Y; Yan Q; Huang Y; Ma X; Han X; Cao S PLoS One; 2018; 13(6):e0198207. PubMed ID: 29856812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]