These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22241243)

  • 1. Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency.
    Yang C; Zhou ZF; Li JW; Yang XX; Qin W; Jiang R; Guo NG; Wang Y; Sun CQ
    Nanoscale; 2012 Feb; 4(4):1304-7. PubMed ID: 22241243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between band gap, dielectric constant, Young's modulus and melting temperature of GaN nanocrystals and their size and shape dependences.
    Lu H; Meng X
    Sci Rep; 2015 Nov; 5():16939. PubMed ID: 26582533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.
    Yang XX; Li JW; Zhou ZF; Wang Y; Yang LW; Zheng WT; Sun CQ
    Nanoscale; 2012 Jan; 4(2):502-10. PubMed ID: 22105904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Bond Dispersion on Raman Spectra Shift in II-VI Semiconductor Nanocrystals.
    Gao Y; Yin P
    Inorg Chem; 2019 Apr; 58(8):4859-4868. PubMed ID: 30931557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman shift, Néel temperature, and optical band gap of NiO nanoparticles.
    Pan B; Meng X; Xia Y; Lu H; Li H
    Phys Chem Chem Phys; 2020 Mar; 22(10):5735-5739. PubMed ID: 32104863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonons in bulk CdSe and CdSe nanowires.
    Mohr M; Thomsen C
    Nanotechnology; 2009 Mar; 20(11):115707. PubMed ID: 19420455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spectral characteristics of CdSe/CdS nanocrystals].
    Liu SM; Xu Z; Wageh H; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):908-11. PubMed ID: 12914161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio.
    Pan H; Feng YP
    ACS Nano; 2008 Nov; 2(11):2410-4. PubMed ID: 19206409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral II-VI semiconductor nanostructure superlattices based on an amino acid ligand.
    Rebilly JN; Gardner PW; Darling GR; Bacsa J; Rosseinsky MJ
    Inorg Chem; 2008 Oct; 47(20):9390-9. PubMed ID: 18800831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-stiffened Raman phonons in group III nitrides: a local bond average approach.
    Ouyang G; Sun CQ; Zhu WG
    J Phys Chem B; 2008 Apr; 112(16):5027-31. PubMed ID: 18380504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Band-Gap Modulation of Graphyne Nanoribbons by Edge Quantum Entrapment.
    Liu Y; Bo M; Sun CQ; Huang Y
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29414901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent Raman red shifts of semiconductor nanocrystals.
    Yang CC; Li S
    J Phys Chem B; 2008 Nov; 112(45):14193-7. PubMed ID: 18850738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers.
    Sturcová A; Davies GR; Eichhorn SJ
    Biomacromolecules; 2005; 6(2):1055-61. PubMed ID: 15762678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of acoustic vibrations of CdSe and CdSe-CdS core-shell nanocrystals measured by low-frequency Raman spectroscopy.
    Mork AJ; Lee EM; Tisdale WA
    Phys Chem Chem Phys; 2016 Oct; 18(41):28797-28801. PubMed ID: 27722475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanoribbon band-gap expansion: broken-bond-induced edge strain and quantum entrapment.
    Zhang X; Kuo JL; Gu M; Bai P; Sun CQ
    Nanoscale; 2010 Oct; 2(10):2160-3. PubMed ID: 20697611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From 1D chain to 3D network: tuning hybrid II-VI nanostructures and their optical properties.
    Huang X; Li J; Zhang Y; Mascarenhas A
    J Am Chem Soc; 2003 Jun; 125(23):7049-55. PubMed ID: 12783559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental studies of stressed nanoparticles of II-VI semiconductors.
    Ferreira DL; Silva FO; Viol LC; Licínio P; Schiavon MA; Alves JL
    J Chem Phys; 2010 Jan; 132(1):014107. PubMed ID: 20078149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.
    Deka S; Quarta A; Lupo MG; Falqui A; Boninelli S; Giannini C; Morello G; De Giorgi M; Lanzani G; Spinella C; Cingolani R; Pellegrino T; Manna L
    J Am Chem Soc; 2009 Mar; 131(8):2948-58. PubMed ID: 19206236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial and physico-chemical properties of polymer-supported CdSZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water.
    Deshpande A; Shah P; Gholap RS; Gupta NM
    J Colloid Interface Sci; 2009 May; 333(1):263-8. PubMed ID: 19215938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods.
    Shaviv E; Salant A; Banin U
    Chemphyschem; 2009 May; 10(7):1028-31. PubMed ID: 19347917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.