These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22241533)

  • 1. Dual surface modification with PEG and corn trypsin inhibitor: effect of PEG:CTI ratio on protein resistance and anticoagulant properties.
    Alibeik S; Zhu S; Yau JW; Weitz JI; Brash JL
    J Biomed Mater Res A; 2012 Apr; 100(4):856-62. PubMed ID: 22241533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification with polyethylene glycol-corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces.
    Alibeik S; Zhu S; Yau JW; Weitz JI; Brash JL
    Acta Biomater; 2011 Dec; 7(12):4177-86. PubMed ID: 21827874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of polyurethane with polyethylene glycol-corn trypsin inhibitor for inhibition of factor Xlla in blood contact.
    Alibeik S; Zhu S; Yau JW; Weitz JI; Brash JL
    J Biomater Sci Polym Ed; 2012; 23(15):1981-93. PubMed ID: 21986216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact.
    Alibeik S; Zhu S; Brash JL
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):389-96. PubMed ID: 20709502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density.
    Unsworth LD; Sheardown H; Brash JL
    Langmuir; 2005 Feb; 21(3):1036-41. PubMed ID: 15667186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting.
    Unsworth LD; Sheardown H; Brash JL
    Biomaterials; 2005 Oct; 26(30):5927-33. PubMed ID: 15958239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the protein interaction between coagulation factor XII and corn trypsin inhibitor by molecular docking and biochemical validation.
    Hamad BK; Pathak M; Manna R; Fischer PM; Emsley J; Dekker LV
    J Thromb Haemost; 2017 Sep; 15(9):1818-1828. PubMed ID: 28688220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood.
    Hansson KM; Nielsen S; Elg M; Deinum J
    J Thromb Haemost; 2014 Oct; 12(10):1678-86. PubMed ID: 25142753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer.
    Chen H; Chen Y; Sheardown H; Brook MA
    Biomaterials; 2005 Dec; 26(35):7418-24. PubMed ID: 16051347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains.
    Feng W; Zhu S; Ishihara K; Brash JL
    Biointerphases; 2006 Mar; 1(1):50. PubMed ID: 20408615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.
    Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB
    Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates.
    Blättler TM; Pasche S; Textor M; Griesser HJ
    Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification with an antithrombin-heparin complex for anticoagulation: studies on a model surface with gold as substrate.
    Sask KN; Zhitomirsky I; Berry LR; Chan AK; Brash JL
    Acta Biomater; 2010 Aug; 6(8):2911-9. PubMed ID: 20197127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention of protein fouling.
    Bergstrand A; Rahmani-Monfared G; Ostlund A; Nydén M; Holmberg K
    J Biomed Mater Res A; 2009 Mar; 88(3):608-15. PubMed ID: 18314896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.
    Ito Y; Hasuda H; Sakuragi M; Tsuzuki S
    Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.