BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 22242008)

  • 1. A genetic screening strategy identifies novel regulators of the proteostasis network.
    Silva MC; Fox S; Beam M; Thakkar H; Amaral MD; Morimoto RI
    PLoS Genet; 2011 Dec; 7(12):e1002438. PubMed ID: 22242008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases.
    Muñoz-Lobato F; Rodríguez-Palero MJ; Naranjo-Galindo FJ; Shephard F; Gaffney CJ; Szewczyk NJ; Hamamichi S; Caldwell KA; Caldwell GA; Link CD; Miranda-Vizuete A
    Antioxid Redox Signal; 2014 Jan; 20(2):217-35. PubMed ID: 23641861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans.
    Brunquell J; Morris S; Lu Y; Cheng F; Westerheide SD
    BMC Genomics; 2016 Aug; 17():559. PubMed ID: 27496166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nascent polypeptide-associated complex is a key regulator of proteostasis.
    Kirstein-Miles J; Scior A; Deuerling E; Morimoto RI
    EMBO J; 2013 May; 32(10):1451-68. PubMed ID: 23604074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans.
    Bar-Lavan Y; Shemesh N; Dror S; Ofir R; Yeger-Lotem E; Ben-Zvi A
    PLoS Genet; 2016 Dec; 12(12):e1006531. PubMed ID: 28036392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response.
    Silva MC; Amaral MD; Morimoto RI
    PLoS Genet; 2013 Aug; 9(8):e1003711. PubMed ID: 24009518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans.
    Kumsta C; Chang JT; Schmalz J; Hansen M
    Nat Commun; 2017 Feb; 8():14337. PubMed ID: 28198373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins.
    Prahlad V; Morimoto RI
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14204-9. PubMed ID: 21844355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Bowers P; Westerheide SD
    Mech Ageing Dev; 2014; 141-142():1-4. PubMed ID: 25168631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging.
    Labbadia J; Brielmann RM; Neto MF; Lin YF; Haynes CM; Morimoto RI
    Cell Rep; 2017 Nov; 21(6):1481-1494. PubMed ID: 29117555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.
    Kumsta C; Hansen M
    Autophagy; 2017 Jun; 13(6):1076-1077. PubMed ID: 28333578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans.
    Burkewitz K; Choe KP; Lee EC; Deonarine A; Strange K
    PLoS One; 2012; 7(3):e34153. PubMed ID: 22470531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans.
    Haldimann P; Muriset M; Vígh L; Goloubinoff P
    J Biol Chem; 2011 May; 286(21):18784-94. PubMed ID: 21471208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans.
    Brunquell J; Raynes R; Bowers P; Morris S; Snyder A; Lugano D; Deonarine A; Westerheide SD
    Aging Cell; 2018 Oct; 17(5):e12813. PubMed ID: 30003683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Morris S; Snyder A; Westerheide SD
    Cell Stress Chaperones; 2018 Jan; 23(1):65-75. PubMed ID: 28674941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults.
    Boocholez H; Marques FC; Levine A; Roitenberg N; Siddiqui AA; Zhu H; Moll L; Grushko D; Haimson RB; Elami T; Cohen E
    Cell Rep; 2022 Feb; 38(6):110350. PubMed ID: 35139369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans.
    Skibinski GA; Boyd L
    BMC Cell Biol; 2012 Apr; 13():10. PubMed ID: 22494772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone networks: tipping the balance in protein folding diseases.
    Voisine C; Pedersen JS; Morimoto RI
    Neurobiol Dis; 2010 Oct; 40(1):12-20. PubMed ID: 20472062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.
    Ben-Zvi A; Miller EA; Morimoto RI
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14914-9. PubMed ID: 19706382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.