BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22242008)

  • 1. A genetic screening strategy identifies novel regulators of the proteostasis network.
    Silva MC; Fox S; Beam M; Thakkar H; Amaral MD; Morimoto RI
    PLoS Genet; 2011 Dec; 7(12):e1002438. PubMed ID: 22242008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans.
    Brunquell J; Morris S; Lu Y; Cheng F; Westerheide SD
    BMC Genomics; 2016 Aug; 17():559. PubMed ID: 27496166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging.
    Labbadia J; Brielmann RM; Neto MF; Lin YF; Haynes CM; Morimoto RI
    Cell Rep; 2017 Nov; 21(6):1481-1494. PubMed ID: 29117555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans.
    Brunquell J; Raynes R; Bowers P; Morris S; Snyder A; Lugano D; Deonarine A; Westerheide SD
    Aging Cell; 2018 Oct; 17(5):e12813. PubMed ID: 30003683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Morris S; Snyder A; Westerheide SD
    Cell Stress Chaperones; 2018 Jan; 23(1):65-75. PubMed ID: 28674941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans.
    Sotiriou A; Ploumi C; Charmpilas N; Tavernarakis N
    Methods Cell Biol; 2024; 181():1-15. PubMed ID: 38302233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteostasis is differentially modulated by inhibition of translation initiation or elongation.
    Clay KJ; Yang Y; Clark C; Petrascheck M
    Elife; 2023 Oct; 12():. PubMed ID: 37795690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate.
    Walker AC; Bhargava R; Vaziriyan-Sani AS; Pourciau C; Donahue ET; Dove AS; Gebhardt MJ; Ellward GL; Romeo T; Czyż DM
    PLoS Pathog; 2021 May; 17(5):e1009510. PubMed ID: 33956916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HSF-1 displays nuclear stress body formation in multiple tissues in Caenorhabditis elegans upon stress and following the transition to adulthood.
    Deonarine A; Walker MWG; Westerheide SD
    Cell Stress Chaperones; 2021 Mar; 26(2):417-431. PubMed ID: 33392968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation.
    Pras A; Houben B; Aprile FA; Seinstra R; Gallardo R; Janssen L; Hogewerf W; Gallrein C; De Vleeschouwer M; Mata-Cabana A; Koopman M; Stroo E; de Vries M; Louise Edwards S; Kirstein J; Vendruscolo M; Falsone SF; Rousseau F; Schymkowitz J; Nollen EAA
    EMBO J; 2021 Nov; 40(21):e107568. PubMed ID: 34617299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets.
    Costa MD; Maciel P
    Cell Mol Life Sci; 2022 May; 79(5):274. PubMed ID: 35503478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria-Derived Protein Aggregates Contribute to the Disruption of Host Proteostasis.
    Walker AC; Bhargava R; Dove AS; Brust AS; Owji AA; Czyż DM
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide observation of the phenomenon of life on the edge of solubility.
    Vecchi G; Sormanni P; Mannini B; Vandelli A; Tartaglia GG; Dobson CM; Hartl FU; Vendruscolo M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1015-1020. PubMed ID: 31892536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network.
    Vonk WIM; Rainbolt TK; Dolan PT; Webb AE; Brunet A; Frydman J
    Mol Cell; 2020 Apr; 78(2):329-345.e9. PubMed ID: 32268122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first Autumn School on Proteostasis: from molecular mechanisms to organismal consequences.
    Boczek E; Gaglia G; Olshina M; Sarraf S
    Cell Stress Chaperones; 2019 May; 24(3):481-492. PubMed ID: 31073902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automating Aggregate Quantification in Caenorhabditis elegans.
    Vaziriyan-Sani AS; Handy RD; Walker AC; Pagolu CN; Enslow SM; Czyż DM
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans.
    Jung R; Lechler MC; Fernandez-Villegas A; Chung CW; Jones HC; Choi YH; Thompson MA; Rödelsperger C; Röseler W; Kaminski Schierle GS; Sommer RJ; David DC
    PLoS Biol; 2023 Sep; 21(9):e3002284. PubMed ID: 37708127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct patterns of proteostasis network gene expression are associated with different prognoses in melanoma patients.
    Wellman R; Jacobson D; Secrier M; Labbadia J
    Sci Rep; 2024 Jan; 14(1):198. PubMed ID: 38167612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression.
    Lamitina T; Huang CG; Strange K
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12173-8. PubMed ID: 16880390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation formation in the polyglutamine diseases: protection at a cost?
    Todd TW; Lim J
    Mol Cells; 2013 Sep; 36(3):185-94. PubMed ID: 23794019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.