These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22242151)

  • 21. Cellular Responses in Drosophila melanogaster Following Teratogen Exposure.
    Bianchini MC; Portela JLR; Puntel RL; Ávila DS
    Methods Mol Biol; 2018; 1797():243-276. PubMed ID: 29896697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity.
    Stofanko M; Kwon SY; Badenhorst P
    PLoS One; 2010 Nov; 5(11):e14051. PubMed ID: 21124962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin.
    Shaurub el-SH; Abd El-Meguid A; Abd El-Aziz NM
    Micron; 2014 Oct; 65():62-8. PubMed ID: 25041832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Haemocyte changes in D. Melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor.
    Labrosse C; Eslin P; Doury G; Drezen JM; Poirié M
    J Insect Physiol; 2005 Feb; 51(2):161-70. PubMed ID: 15749101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences between larval and pupal hemocytes of the tobacco hornworm, Manduca sexta, determined by monoclonal antibodies and density centrifugation.
    Beetz S; Brinkmann M; Trenczek T
    J Insect Physiol; 2004 Sep; 50(9):805-19. PubMed ID: 15350501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.
    Urbański A; Adamski Z; Rosiński G
    Micron; 2018 Jan; 104():8-20. PubMed ID: 29049928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster.
    Wood W; Faria C; Jacinto A
    J Cell Biol; 2006 May; 173(3):405-16. PubMed ID: 16651377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L-arginine enhances immunity to parasitoids in Drosophila melanogaster and increases NO production in lamellocytes.
    Kraaijeveld AR; Elrayes NP; Schuppe H; Newland PL
    Dev Comp Immunol; 2011 Aug; 35(8):857-64. PubMed ID: 21527285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The c-src homologue Src64B is sufficient to activate the Drosophila cellular immune response.
    Williams MJ
    J Innate Immun; 2009; 1(4):335-9. PubMed ID: 20375590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response.
    Williams MJ; Ando I; Hultmark D
    Genes Cells; 2005 Aug; 10(8):813-23. PubMed ID: 16098145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interdependence of macrophage migration and ventral nerve cord development in Drosophila embryos.
    Evans IR; Hu N; Skaer H; Wood W
    Development; 2010 May; 137(10):1625-33. PubMed ID: 20392742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specification of leading and trailing cell features during collective migration in the Drosophila trachea.
    Lebreton G; Casanova J
    J Cell Sci; 2014 Jan; 127(Pt 2):465-74. PubMed ID: 24213534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemokinetic behaviour of insect haemocytes in vitro.
    Takle GB; Lackie AM
    J Cell Sci; 1986 Sep; 85():85-94. PubMed ID: 3098745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis.
    Bergeret E; Perrin J; Williams M; Grunwald D; Engel E; Thevenon D; Taillebourg E; Bruckert F; Cosson P; Fauvarque MO
    J Cell Sci; 2008 Oct; 121(Pt 20):3325-34. PubMed ID: 18796536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxic effects of acrylamide on survival, development and haemocytes of Musca domestica.
    Szczerbina T; Banach Z; Tylko G; Pyza E
    Food Chem Toxicol; 2008 Jul; 46(7):2316-9. PubMed ID: 18448223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postembryonic hematopoiesis in Drosophila.
    Lanot R; Zachary D; Holder F; Meister M
    Dev Biol; 2001 Feb; 230(2):243-57. PubMed ID: 11161576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.
    Ratheesh A; Biebl J; Vesela J; Smutny M; Papusheva E; Krens SFG; Kaufmann W; Gyoergy A; Casano AM; Siekhaus DE
    Dev Cell; 2018 May; 45(3):331-346.e7. PubMed ID: 29738712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel site of haematopoiesis and appearance and dispersal of distinct haemocyte types in the Manduca sexta embryo (Insecta, Lepidoptera).
    von Bredow YM; von Bredow CR; Trenczek TE
    Dev Comp Immunol; 2020 Oct; 111():103722. PubMed ID: 32360227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.
    Demir E; Marcos R
    Food Chem Toxicol; 2017 Jul; 105():1-7. PubMed ID: 28343031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The antioxidants dimethylsulfoxide and dimethylthiourea affect the immediate adhesion responses of larval haemocytes from 3 lepidopteran insect species.
    Dunphy GB; Chen G; Webster JM
    Can J Microbiol; 2007 Dec; 53(12):1330-47. PubMed ID: 18059566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.