These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 22242462)
21. Absorption and disposition of scutellarin in rats: a pharmacokinetic explanation for the high exposure of its isomeric metabolite. Gao C; Chen X; Zhong D Drug Metab Dispos; 2011 Nov; 39(11):2034-44. PubMed ID: 21810967 [TBL] [Abstract][Full Text] [Related]
22. [Pharmacokinetics and metabolites of scutellarin in normal and model rats]. Gao HM; Wang ZM; Tian J Yao Xue Xue Bao; 2005 Nov; 40(11):1024-7. PubMed ID: 16499088 [TBL] [Abstract][Full Text] [Related]
23. Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats. Sun M; Zhai X; Xue K; Hu L; Yang X; Li G; Si L Eur J Pharm Sci; 2011 Jun; 43(3):132-40. PubMed ID: 21530655 [TBL] [Abstract][Full Text] [Related]
24. Multivesicular liposome formulation for the sustained delivery of breviscapine. Zhong H; Deng Y; Wang X; Yang B Int J Pharm; 2005 Sep; 301(1-2):15-24. PubMed ID: 16023316 [TBL] [Abstract][Full Text] [Related]
25. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. Hauss DJ; Fogal SE; Ficorilli JV; Price CA; Roy T; Jayaraj AA; Keirns JJ J Pharm Sci; 1998 Feb; 87(2):164-9. PubMed ID: 9519148 [TBL] [Abstract][Full Text] [Related]
26. The role of the intestinal lymphatics in the absorption of two highly lipophilic cholesterol ester transfer protein inhibitors (CP524,515 and CP532,623). Trevaskis NL; McEvoy CL; McIntosh MP; Edwards GA; Shanker RM; Charman WN; Porter CJ Pharm Res; 2010 May; 27(5):878-93. PubMed ID: 20221896 [TBL] [Abstract][Full Text] [Related]
27. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80. Lind ML; Jacobsen J; Holm R; Müllertz A Eur J Pharm Sci; 2008 Oct; 35(3):211-8. PubMed ID: 18675904 [TBL] [Abstract][Full Text] [Related]
28. Distribution of liposomal breviscapine in brain following intravenous injection in rats. Lv W; Guo J; Li J; Huang L; Ping Q Int J Pharm; 2005 Dec; 306(1-2):99-106. PubMed ID: 16280216 [TBL] [Abstract][Full Text] [Related]
29. Contribution of lymphatic transport to the systemic exposure of orally administered moxidectin in conscious lymph duct-cannulated dogs. Lespine A; Chanoit G; Bousquet-Melou A; Lallemand E; Bassissi FM; Alvinerie M; Toutain PL Eur J Pharm Sci; 2006 Jan; 27(1):37-43. PubMed ID: 16198549 [TBL] [Abstract][Full Text] [Related]
30. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. Lin LL; Liu AJ; Liu JG; Yu XH; Qin LP; Su DF J Cardiovasc Pharmacol; 2007 Sep; 50(3):327-32. PubMed ID: 17878763 [TBL] [Abstract][Full Text] [Related]
31. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion. Porter CJ; Charman SA; Humberstone AJ; Charman WN J Pharm Sci; 1996 Apr; 85(4):357-61. PubMed ID: 8901068 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Dahan A; Hoffman A Eur J Pharm Sci; 2005 Mar; 24(4):381-8. PubMed ID: 15734305 [TBL] [Abstract][Full Text] [Related]
33. Oral bioavailability assessment and intestinal lymphatic transport of Org 45697 and Org 46035, two highly lipophilic novel immunomodulator analogues. Caliph SM; Faassen WA; Vogel GM; Porter CJ Curr Drug Deliv; 2009 Aug; 6(4):359-66. PubMed ID: 19534711 [TBL] [Abstract][Full Text] [Related]
34. Lymphatic transport of puerarin occurs after oral administration of different lipid-based formulations to unconscious lymph duct-cannulated rats. Zhou A; Lu T; Wang L; Lu C; Wang L; Wan M; Wu H Pharm Dev Technol; 2014 Sep; 19(6):743-7. PubMed ID: 23978005 [TBL] [Abstract][Full Text] [Related]
35. Effects of lipid vehicle and P-glycoprotein inhibition on the mesenteric lymphatic transport of paclitaxel in unconscious, lymph duct-cannulated rats. Cai Q; Deng X; Li Z; An D; Shen T; Zhong M Drug Deliv; 2016; 23(1):147-53. PubMed ID: 24786483 [TBL] [Abstract][Full Text] [Related]
36. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. Tsai YJ; Tsai TH J Agric Food Chem; 2012 Dec; 60(51):12435-42. PubMed ID: 23210543 [TBL] [Abstract][Full Text] [Related]
37. The effect of general anesthesia on the intestinal lymphatic transport of lipophilic drugs: comparison between anesthetized and freely moving conscious rat models. Dahan A; Mendelman A; Amsili S; Ezov N; Hoffman A Eur J Pharm Sci; 2007 Dec; 32(4-5):367-74. PubMed ID: 17980560 [TBL] [Abstract][Full Text] [Related]
38. Pharmacokinetics of homoplantaginin in rats following intravenous, peritoneal injection and oral administration. Cong Y; Wu S; Han J; Chen J; Liu H; Sun Q; Wu Y; Fang Y J Pharm Biomed Anal; 2016 Sep; 129():405-409. PubMed ID: 27474945 [TBL] [Abstract][Full Text] [Related]
39. Influence of the type of surfactant and the degree of dispersion on the lymphatic transport of halofantrine in conscious rats. Karpf DM; Holm R; Kristensen HG; Müllertz A Pharm Res; 2004 Aug; 21(8):1413-8. PubMed ID: 15359576 [TBL] [Abstract][Full Text] [Related]
40. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Holm R; Porter CJ; Müllertz A; Kristensen HG; Charman WN Pharm Res; 2002 Sep; 19(9):1354-61. PubMed ID: 12403073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]