BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22242846)

  • 1. Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts.
    Meyers MJ; Goldberg DE
    Curr Top Med Chem; 2012; 12(5):445-55. PubMed ID: 22242846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present).
    Cheuka PM; Dziwornu G; Okombo J; Chibale K
    J Med Chem; 2020 May; 63(9):4445-4467. PubMed ID: 31913032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors.
    Moura PA; Dame JB; Fidock DA
    Antimicrob Agents Chemother; 2009 Dec; 53(12):4968-78. PubMed ID: 19752273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malaria parasite plasmepsins: More than just plain old degradative pepsins.
    Nasamu AS; Polino AJ; Istvan ES; Goldberg DE
    J Biol Chem; 2020 Jun; 295(25):8425-8441. PubMed ID: 32366462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azole-based non-peptidomimetic plasmepsin inhibitors.
    Kinena L; Leitis G; Kanepe-Lapsa I; Bobrovs R; Jaudzems K; Ozola V; Suna E; Jirgensons A
    Arch Pharm (Weinheim); 2018 Sep; 351(9):e1800151. PubMed ID: 30063266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid.
    Kasam V; Zimmermann M; Maass A; Schwichtenberg H; Wolf A; Jacq N; Breton V; Hofmann-Apitius M
    J Chem Inf Model; 2007; 47(5):1818-28. PubMed ID: 17727268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases.
    Bobrovs R; Jaudzems K; Jirgensons A
    J Med Chem; 2019 Oct; 62(20):8931-8950. PubMed ID: 31062983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitors of the Plasmodium falciparum parasite aspartic protease plasmepsin II as potential antimalarial agents.
    Boss C; Richard-Bildstein S; Weller T; Fischli W; Meyer S; Binkert C
    Curr Med Chem; 2003 Jun; 10(11):883-907. PubMed ID: 12678679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimalarials: Review of Plasmepsins as Drug Targets and HIV Protease Inhibitors Interactions.
    Miller Iii WA; Teye J; Achieng AO; Mogire RM; Akala H; Ong'echa JM; Rathi B; Durvasula R; Kempaiah P; Kwofie SK
    Curr Top Med Chem; 2019; 18(23):2022-2028. PubMed ID: 30499404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fighting malaria: structure-guided discovery of nonpeptidomimetic plasmepsin inhibitors.
    Huizing AP; Mondal M; Hirsch AK
    J Med Chem; 2015 Jul; 58(13):5151-63. PubMed ID: 25719272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimalarial synergy of cysteine and aspartic protease inhibitors.
    Semenov A; Olson JE; Rosenthal PJ
    Antimicrob Agents Chemother; 1998 Sep; 42(9):2254-8. PubMed ID: 9736544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimalarial Phytochemicals Identification from
    Shah AP; Parmar GR; Sailor GU; Seth AK
    Folia Med (Plovdiv); 2019 Dec; 61(4):584-593. PubMed ID: 32337872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins - biochemical and structural insights.
    Mishra V; Rathore I; Arekar A; Sthanam LK; Xiao H; Kiso Y; Sen S; Patankar S; Gustchina A; Hidaka K; Wlodawer A; Yada RY; Bhaumik P
    FEBS J; 2018 Aug; 285(16):3077-3096. PubMed ID: 29943906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plerixafor and related macrocyclic amines are potential drug candidates in treatment of malaria by "filling the flap" region of plasmepsin enzymes.
    Abiri A
    Med Hypotheses; 2018 Sep; 118():68-73. PubMed ID: 30037618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of plasmepsin inhibitor by focusing on similar structural feature with chloroquine to avoid drug-resistant mechanism of Plasmodium falciparum.
    Miura T; Hidaka K; Azai Y; Kashimoto K; Kawasaki Y; Chen SE; de Freitas RF; Freire E; Kiso Y
    Bioorg Med Chem Lett; 2014 Apr; 24(7):1698-701. PubMed ID: 24631188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational inhibitor design against malaria plasmepsins.
    Bjelic S; Nervall M; Gutiérrez-de-Terán H; Ersmark K; Hallberg A; Aqvist J
    Cell Mol Life Sci; 2007 Sep; 64(17):2285-305. PubMed ID: 17585371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New paradigm of an old target: an update on structural biology and current progress in drug design towards plasmepsin II.
    Dan N; Bhakat S
    Eur J Med Chem; 2015 May; 95():324-48. PubMed ID: 25827401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmepsins as potential targets for new antimalarial therapy.
    Ersmark K; Samuelsson B; Hallberg A
    Med Res Rev; 2006 Sep; 26(5):626-66. PubMed ID: 16838300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the plasmepsin 4 orthologs of Plasmodium sp. with "double drug" inhibitors.
    Janka L; Clemente J; Vaiana N; Sparatore A; Romeo S; Dunn BM
    Protein Pept Lett; 2008; 15(9):868-73. PubMed ID: 18991760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors.
    Nezami A; Freire E
    Int J Parasitol; 2002 Dec; 32(13):1669-76. PubMed ID: 12435452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.