These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22243070)

  • 21. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals.
    Bradlyn B; Cano J; Wang Z; Vergniory MG; Felser C; Cava RJ; Bernevig BA
    Science; 2016 Aug; 353(6299):aaf5037. PubMed ID: 27445310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dirac cones in two-dimensional systems: from hexagonal to square lattices.
    Liu Z; Wang J; Li J
    Phys Chem Chem Phys; 2013 Nov; 15(43):18855-62. PubMed ID: 24084752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the Fermi velocity in Dirac materials with an electric field.
    Díaz-Fernández A; Chico L; González JW; Domínguez-Adame F
    Sci Rep; 2017 Aug; 7(1):8058. PubMed ID: 28808341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emergence of Majorana and Dirac particles in ultracold fermions via tunable interactions, spin-orbit effects, and Zeeman fields.
    Seo K; Han L; Sá de Melo CA
    Phys Rev Lett; 2012 Sep; 109(10):105303. PubMed ID: 23005296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Band engineering method to create Dirac cones of accidental degeneracy in general photonic crystals without symmetry.
    Chu H; Zhang Y; Luo J; Xu C; Xiong X; Peng R; Wang M; Lai Y
    Opt Express; 2021 Jun; 29(12):18070-18080. PubMed ID: 34154074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.
    Jiao Y; Ma F; Zhang C; Bell J; Sanvito S; Du A
    Phys Rev Lett; 2017 Jul; 119(1):016403. PubMed ID: 28731769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reflectionless Klein tunneling of Dirac fermions: comparison of split-operator and staggered-lattice discretization of the Dirac equation.
    Donís Vela A; Lemut G; Pacholski MJ; Tworzydło J; Beenakker CWJ
    J Phys Condens Matter; 2022 Jul; 34(36):. PubMed ID: 35767975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
    Diez M; Dahlhaus JP; Wimmer M; Beenakker CW
    Phys Rev Lett; 2014 May; 112(19):196602. PubMed ID: 24877956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral magnetism and spontaneous spin Hall effect of interacting Bose superfluids.
    Li X; Natu SS; Paramekanti A; Das Sarma S
    Nat Commun; 2014 Oct; 5():5174. PubMed ID: 25300774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices.
    Pyrialakos GG; Nye NS; Kantartzis NV; Christodoulides DN
    Phys Rev Lett; 2017 Sep; 119(11):113901. PubMed ID: 28949222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5).
    Chen RY; Chen ZG; Song XY; Schneeloch JA; Gu GD; Wang F; Wang NL
    Phys Rev Lett; 2015 Oct; 115(17):176404. PubMed ID: 26551130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New generation of massless Dirac fermions in graphene under external periodic potentials.
    Park CH; Yang L; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2008 Sep; 101(12):126804. PubMed ID: 18851401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
    Weick G; Woollacott C; Barnes WL; Hess O; Mariani E
    Phys Rev Lett; 2013 Mar; 110(10):106801. PubMed ID: 23521276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator.
    Okada Y; Serbyn M; Lin H; Walkup D; Zhou W; Dhital C; Neupane M; Xu S; Wang YJ; Sankar R; Chou F; Bansil A; Hasan MZ; Wilson SD; Fu L; Madhavan V
    Science; 2013 Sep; 341(6153):1496-9. PubMed ID: 23989954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precise Experimental Test of the Luttinger Theorem and Particle-Hole Symmetry for a Strongly Correlated Fermionic System.
    Hossain MS; Mueed MA; Ma MK; Villegas Rosales KA; Chung YJ; Pfeiffer LN; West KW; Baldwin KW; Shayegan M
    Phys Rev Lett; 2020 Jul; 125(4):046601. PubMed ID: 32794794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-dimensional ZrB
    Zhang B; Li Y; Zhang C; Wang J
    Phys Chem Chem Phys; 2019 Nov; 21(43):24212-24217. PubMed ID: 31661097
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Tang Q; Belić MR; Zhong H; Cao M; Li Y; Zhang Y
    Opt Lett; 2024 Aug; 49(15):4110-4113. PubMed ID: 39090871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic Dirac fermions in a Bi square net of SrMnBi2.
    Park J; Lee G; Wolff-Fabris F; Koh YY; Eom MJ; Kim YK; Farhan MA; Jo YJ; Kim C; Shim JH; Kim JS
    Phys Rev Lett; 2011 Sep; 107(12):126402. PubMed ID: 22026779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dirac cones and minigaps for graphene on Ir(111).
    Pletikosić I; Kralj M; Pervan P; Brako R; Coraux J; N'diaye AT; Busse C; Michely T
    Phys Rev Lett; 2009 Feb; 102(5):056808. PubMed ID: 19257540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.