These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22243312)
1. Reacting particles in open chaotic flows. de Moura AP Phys Rev Lett; 2011 Dec; 107(27):274501. PubMed ID: 22243312 [TBL] [Abstract][Full Text] [Related]
2. Finite-size effects on active chaotic advection. Nishikawa T; Toroczkai Z; Grebogi C; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641 [TBL] [Abstract][Full Text] [Related]
3. Population dynamics advected by chaotic flows: A discrete-time map approach. Lopez C; Hernandez-Garcia E; Piro O; Vulpiani A; Zambianchi E Chaos; 2001 Jun; 11(2):397-403. PubMed ID: 12779474 [TBL] [Abstract][Full Text] [Related]
4. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows. Motter AE; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056307. PubMed ID: 14682884 [TBL] [Abstract][Full Text] [Related]
5. Finite-size particles, advection, and chaos: a collective phenomenon of intermittent bursting. Medrano-T RO; Moura A; Tél T; Caldas IL; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056206. PubMed ID: 19113199 [TBL] [Abstract][Full Text] [Related]
6. Aggregation and fragmentation dynamics of inertial particles in chaotic flows. Zahnow JC; Vilela RD; Feudel U; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055301. PubMed ID: 18643122 [TBL] [Abstract][Full Text] [Related]
7. Finite-size effects on open chaotic advection. Vilela RD; de Moura AP; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026302. PubMed ID: 16605449 [TBL] [Abstract][Full Text] [Related]
8. Stability of attractors formed by inertial particles in open chaotic flows. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608 [TBL] [Abstract][Full Text] [Related]
9. Onset of chaotic advection in open flows. Biemond JJ; de Moura AP; Károlyi G; Grebogi C; Nijmeijer H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016317. PubMed ID: 18764060 [TBL] [Abstract][Full Text] [Related]
10. Chaotic advection, diffusion, and reactions in open flows. Tel T; Karolyi G; Pentek A; Scheuring I; Toroczkai Z; Grebogi C; Kadtke J Chaos; 2000 Mar; 10(1):89-98. PubMed ID: 12779365 [TBL] [Abstract][Full Text] [Related]
11. Advection of finite-size particles in open flows. Benczik IJ; Toroczkai Z; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036303. PubMed ID: 12689161 [TBL] [Abstract][Full Text] [Related]
12. Effective dimensions and chemical reactions in fluid flows. Károlyi G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046315. PubMed ID: 17995114 [TBL] [Abstract][Full Text] [Related]
13. Chemical or biological activity in open chaotic flows. Károlyi G; Péntek A; Toroczkai Z; Tél T; Grebogi C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5468-81. PubMed ID: 11969526 [TBL] [Abstract][Full Text] [Related]
14. Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. Benczik IJ; Toroczkai Z; Tél T Phys Rev Lett; 2002 Oct; 89(16):164501. PubMed ID: 12398726 [TBL] [Abstract][Full Text] [Related]
15. Anomalous transport of particle tracers in multidimensional cellular flows. Vargas WL; Palacio LE; Dominguez DM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026314. PubMed ID: 12636807 [TBL] [Abstract][Full Text] [Related]
16. Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise. Do Y; Lai YC Phys Rev Lett; 2003 Nov; 91(22):224101. PubMed ID: 14683241 [TBL] [Abstract][Full Text] [Related]
17. Reactive particles in random flows. Károlyi G; Tél T; de Moura AP; Grebogi C Phys Rev Lett; 2004 Apr; 92(17):174101. PubMed ID: 15169152 [TBL] [Abstract][Full Text] [Related]
18. Chaotic advection near a three-vortex collapse. Leoncini X; Kuznetsov L; Zaslavsky GM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036224. PubMed ID: 11308758 [TBL] [Abstract][Full Text] [Related]
19. Stochastic perturbations in open chaotic systems: random versus noisy maps. Bódai T; Altmann EG; Endler A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042902. PubMed ID: 23679484 [TBL] [Abstract][Full Text] [Related]
20. Can aerosols be trapped in open flows? Vilela RD; Motter AE Phys Rev Lett; 2007 Dec; 99(26):264101. PubMed ID: 18233579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]