These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22243860)

  • 1. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures.
    Chen KY; Liu JC; Chiang PN; Wang SL; Kuan WH; Tzou YM; Deng Y; Tseng KJ; Chen CC; Wang MK
    Environ Pollut; 2012 Mar; 162():151-8. PubMed ID: 22243860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.
    Huang SW; Chiang PN; Liu JC; Hung JT; Kuan WH; Tzou YM; Wang SL; Huang JH; Chen CC; Wang MK; Loeppert RH
    Chemosphere; 2012 May; 87(6):587-94. PubMed ID: 22309710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic fragments newly released from heat-treated peat soils create synergies with dissolved organic carbon to enhance Cr(VI) removal.
    Chen KY; Liu YT; Hsieh YC; Tzou YM
    Ecotoxicol Environ Saf; 2020 Sep; 201():110800. PubMed ID: 32540617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.
    Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R
    J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue.
    Whittleston RA; Stewart DI; Mortimer RJ; Tilt ZC; Brown AP; Geraki K; Burke IT
    J Hazard Mater; 2011 Oct; 194():15-23. PubMed ID: 21871726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits and dynamics of methane oxidation in landfill cover soils.
    Spokas KA; Bogner JE
    Waste Manag; 2011 May; 31(5):823-32. PubMed ID: 20096554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status.
    Tokunaga TK; Wan J; Lanzirotti A; Sutton SR; Newville M; Rao W
    Environ Sci Technol; 2007 Jun; 41(12):4326-31. PubMed ID: 17626432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.
    Sarangi A; Krishnan C
    Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils.
    Chiu CC; Cheng CJ; Lin TH; Juang KW; Lee DY
    J Hazard Mater; 2009 Jan; 161(2-3):1239-44. PubMed ID: 18524481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site.
    Zhang K; Li F
    Appl Microbiol Biotechnol; 2011 May; 90(3):1163-9. PubMed ID: 21318365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants.
    Bokare AD; Choi W
    Environ Sci Technol; 2010 Oct; 44(19):7232-7. PubMed ID: 20408538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil.
    Tang SC; Yin K; Lo IM
    J Contam Hydrol; 2011 Jul; 125(1-4):39-46. PubMed ID: 21601936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on the release of hexadecane from soil by thermal treatment.
    Merino J; Bucalá V
    J Hazard Mater; 2007 May; 143(1-2):455-61. PubMed ID: 17084527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can assessing for potential contribution of soil organic and inorganic components for butachlor sorption be improved?
    He Y; Liu Z; Zhang J; Wang H; Shi J; Xu J
    J Environ Qual; 2011; 40(6):1705-13. PubMed ID: 22031552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of nonionic organic compounds on thermally treated soils.
    Zhang H; Zhao S; Yu Y; Ni Y; Lu X; Tian Y; Chen J
    Environ Sci Technol; 2010 May; 44(10):3677-82. PubMed ID: 20402500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites.
    Thacker U; Parikh R; Shouche Y; Madamwar D
    Bioresour Technol; 2007 May; 98(8):1541-7. PubMed ID: 16931000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils.
    Kunhikrishnan A; Choppala G; Seshadri B; Wijesekara H; Bolan NS; Mbene K; Kim WI
    J Environ Manage; 2017 Jan; 186(Pt 2):183-191. PubMed ID: 27530073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.