BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22243962)

  • 1. Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain.
    Lee J; Bogyo M
    Bioorg Med Chem Lett; 2012 Feb; 22(3):1340-3. PubMed ID: 22243962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of cell-permeable, fluorescent activity-based probes for the lysosomal cysteine protease asparaginyl endopeptidase (AEP)/legumain.
    Sexton KB; Witte MD; Blum G; Bogyo M
    Bioorg Med Chem Lett; 2007 Feb; 17(3):649-53. PubMed ID: 17189693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian legumain - A lysosomal cysteine protease with extracellular functions?
    Lunde NN; Bosnjak T; Solberg R; Johansen HT
    Biochimie; 2019 Nov; 166():77-83. PubMed ID: 31181234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain.
    Lee J; Bogyo M
    ACS Chem Biol; 2010 Feb; 5(2):233-43. PubMed ID: 20017516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aza-peptide epoxides: potent and selective inhibitors of Schistosoma mansoni and pig kidney legumains (asparaginyl endopeptidases).
    James KE; Götz MG; Caffrey CR; Hansell E; Carter W; Barrett AJ; McKerrow JH; Powers JC
    Biol Chem; 2003 Dec; 384(12):1613-8. PubMed ID: 14719804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the development of legumain-selective chemical probes and peptide prodrugs.
    Poreba M
    Biol Chem; 2019 Nov; 400(12):1529-1550. PubMed ID: 31021817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and
    Corrigan TS; Lotti Diaz LM; Border SE; Ratigan SC; Kasper KQ; Sojka D; Fajtova P; Caffrey CR; Salvesen GS; McElroy CA; Hadad CM; Doğan Ekici Ö
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1387-1402. PubMed ID: 32633155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes.
    Poreba M; Solberg R; Rut W; Lunde NN; Kasperkiewicz P; Snipas SJ; Mihelic M; Turk D; Turk B; Salvesen GS; Drag M
    Cell Chem Biol; 2016 Aug; 23(8):1023-35. PubMed ID: 27478158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aza-peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases.
    Ekici OD; Götz MG; James KE; Li ZZ; Rukamp BJ; Asgian JL; Caffrey CR; Hansell E; Dvorák J; McKerrow JH; Potempa J; Travis J; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2004 Apr; 47(8):1889-92. PubMed ID: 15055989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of aza-peptide electrophile activity-based probes of caspases.
    Sexton KB; Kato D; Berger AB; Fonovic M; Verhelst SH; Bogyo M
    Cell Death Differ; 2007 Apr; 14(4):727-32. PubMed ID: 17170749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo.
    Li DN; Matthews SP; Antoniou AN; Mazzeo D; Watts C
    J Biol Chem; 2003 Oct; 278(40):38980-90. PubMed ID: 12860980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Terminomics/TAILS Profiling of Macrophages after Chemical Inhibition of Legumain.
    Anderson BM; de Almeida LGN; Sekhon H; Young D; Dufour A; Edgington-Mitchell LE
    Biochemistry; 2020 Jan; 59(3):329-340. PubMed ID: 31774660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mammalian Cysteine Protease Legumain in Health and Disease.
    Solberg R; Lunde NN; Forbord KM; Okla M; Kassem M; Jafari A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aza-peptidyl Michael acceptor and epoxide inhibitors--potent and selective inhibitors of Schistosoma mansoni and Ixodes ricinus legumains (asparaginyl endopeptidases).
    Ovat A; Muindi F; Fagan C; Brouner M; Hansell E; Dvorák J; Sojka D; Kopácek P; McKerrow JH; Caffrey CR; Powers JC
    J Med Chem; 2009 Nov; 52(22):7192-210. PubMed ID: 19848405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and properties of the first all-aza analogue of a biologically active peptide.
    Gante J; Krug M; Lauterbach G; Weitzel R; Hiller W
    J Pept Sci; 1995; 1(3):201-6. PubMed ID: 9222997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of legumain in health and disease.
    Dall E; Brandstetter H
    Biochimie; 2016 Mar; 122():126-50. PubMed ID: 26403494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of novel homoazanucleosides and their peptidyl analogs.
    Salunke RV; Mishra PK; Sanghvi YS; Ramesh NG
    Org Biomol Chem; 2020 Jul; 18(29):5639-5651. PubMed ID: 32724966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice.
    Shirahama-Noda K; Yamamoto A; Sugihara K; Hashimoto N; Asano M; Nishimura M; Hara-Nishimura I
    J Biol Chem; 2003 Aug; 278(35):33194-9. PubMed ID: 12775715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aza-peptide epoxides: a new class of inhibitors selective for clan CD cysteine proteases.
    Asgian JL; James KE; Li ZZ; Carter W; Barrett AJ; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2002 Nov; 45(23):4958-60. PubMed ID: 12408706
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.