BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22243996)

  • 1. Controlling disease outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in Australia.
    Cowled BD; Garner MG; Negus K; Ward MP
    Vet Res; 2012 Jan; 43(1):3. PubMed ID: 22243996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective surveillance strategies following a potential classical Swine Fever incursion in a remote wild pig population in North-Western Australia.
    Leslie E; Cowled B; Graeme Garner M; Toribio JA; Ward MP
    Transbound Emerg Dis; 2014 Oct; 61(5):432-42. PubMed ID: 23294519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease severity declines over time after a wild boar population has been affected by classical swine fever--legend or actual epidemiological process?
    Lange M; Kramer-Schadt S; Blome S; Beer M; Thulke HH
    Prev Vet Med; 2012 Sep; 106(2):185-95. PubMed ID: 22361000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: the example of Bulgaria.
    Martínez-López B; Ivorra B; Ramos AM; Fernández-Carrión E; Alexandrov T; Sánchez-Vizcaíno JM
    Vet Microbiol; 2013 Jul; 165(1-2):79-85. PubMed ID: 23465838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descriptive epidemiology of a classical swine fever outbreak in the Limburg Province of Belgium in 1997.
    Mintiens K; Deluyker H; Laevens H; Koenen F; Dewulf J; De Kruif A
    J Vet Med B Infect Dis Vet Public Health; 2001 Mar; 48(2):143-9. PubMed ID: 11315525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the time at which overcrowding and feed interruption emerge on the swine premises under movement restrictions during a classical swine fever outbreak.
    Weng HY; Yadav S; Olynk Widmar NJ; Croney C; Ash M; Cooper M
    Animal; 2017 Mar; 11(3):493-499. PubMed ID: 27481403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology.
    Elber AR; Stegeman A; Moser H; Ekker HM; Smak JA; Pluimers FH
    Prev Vet Med; 1999 Dec; 42(3-4):157-84. PubMed ID: 10619154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of spatio-temporal vaccination regimes in wildlife populations under different viral constraints.
    Lange M; Kramer-Schadt S; Thulke HH
    Vet Res; 2012 Apr; 43(1):37. PubMed ID: 22530786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission of classical swine fever virus within herds during the 1997-1998 epidemic in The Netherlands.
    Stegeman A; Elbers AR; Bouma A; de Smit H; de Jong MC
    Prev Vet Med; 1999 Dec; 42(3-4):201-18. PubMed ID: 10619156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental infection with a classical swine fever virus in weaner pigs. II. The use of serological data to estimate the day of virus introduction in natural outbreaks.
    Laevens H; Deluyker H; Koenen F; Van Caenegem G; Vermeersch JP; de Kruif A
    Vet Q; 1998 Apr; 20(2):46-9. PubMed ID: 9563159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach to model monitoring and surveillance data of wildlife diseases-exemplified by Classical Swine Fever in wild boar.
    Stahnke N; Liebscher V; Staubach C; Ziller M
    Prev Vet Med; 2013 Nov; 112(3-4):355-69. PubMed ID: 24008002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiological analysis of classical swine fever in wild boars in Japan.
    Shimizu Y; Hayama Y; Murato Y; Sawai K; Yamaguchi E; Yamamoto T
    BMC Vet Res; 2021 May; 17(1):188. PubMed ID: 33975588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of antiviral agents to control classical swine fever: a modelling study.
    Backer JA; Vrancken R; Neyts J; Goris N
    Antiviral Res; 2013 Sep; 99(3):245-50. PubMed ID: 23827097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local spread of classical swine fever upon virus introduction into The Netherlands: mapping of areas at high risk.
    Boender GJ; Nodelijk G; Hagenaars TJ; Elbers AR; de Jong MC
    BMC Vet Res; 2008 Feb; 4():9. PubMed ID: 18298803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the effect of control strategies on classical swine fever epidemics.
    Klinkenberg D; Everts-van der Wind A; Graat EA; de Jong MC
    Math Biosci; 2003 Dec; 186(2):145-73. PubMed ID: 14583170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate of inter-herd transmission of classical swine fever virus by different types of contact during the 1997-8 epidemic in The Netherlands.
    Stegeman JA; Elbers AR; Boum A; de Jong MC
    Epidemiol Infect; 2002 Apr; 128(2):285-91. PubMed ID: 12002547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors associated with the introduction of classical swine fever virus into pig herds in the central area of the 1997/98 epidemic in The Netherlands.
    Elbers AR; Stegeman JA; de Jong MC
    Vet Rec; 2001 Sep; 149(13):377-82. PubMed ID: 11601514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.