BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22244193)

  • 1. An optimization algorithm for estimation of microbial survival parameters during thermal processing.
    Chen G; Campanella OH
    Int J Food Microbiol; 2012 Mar; 154(1-2):52-8. PubMed ID: 22244193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data.
    Peleg M; Normand MD
    Crit Rev Food Sci Nutr; 2004; 44(6):409-18. PubMed ID: 15615424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isothermal semi-logarithmic survival curves.
    Peleg M
    Crit Rev Food Sci Nutr; 2003; 43(6):645-58. PubMed ID: 14669882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 May; 116(3):391-9. PubMed ID: 17395330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating microbial survival curves during thermal processing in real time.
    Peleg M; Normand MD; Corradini MG
    J Appl Microbiol; 2005; 98(2):406-17. PubMed ID: 15659195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells.
    van Boekel MA
    Int J Food Microbiol; 2002 Mar; 74(1-2):139-59. PubMed ID: 11930951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses.
    Garre A; Huertas JP; González-Tejedor GA; Fernández PS; Egea JA; Palop A; Esnoz A
    Int J Food Microbiol; 2018 Feb; 266():133-141. PubMed ID: 29216553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".
    Corradini MG; Normand MD; Newcomer C; Schaffner DW; Peleg M
    J Food Sci; 2009; 74(1):R1-R11. PubMed ID: 19200112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Listeria monocytogenes survival during thermoultrasonic treatments in non-isothermal conditions: Effect of ultrasound on temperature and survival profiles.
    Franco-Vega A; Ramírez-Corona N; López-Malo A; Palou E
    Food Microbiol; 2015 Dec; 52():124-30. PubMed ID: 26338125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the non-isothermal inactivation patterns of Bacillus sporothermodurans IC4 spores in soups from their isothermal survival data.
    Periago PM; van Zuijlen A; Fernandez PS; Klapwijk PM; ter Steeg PF; Corradini MG; Peleg M
    Int J Food Microbiol; 2004 Sep; 95(2):205-18. PubMed ID: 15282132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidelines for the design of (optimal) isothermal inactivation experiments.
    Peñalver-Soto JL; Garre A; Esnoz A; Fernández PS; Egea JA
    Food Res Int; 2019 Dec; 126():108714. PubMed ID: 31732079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Laboratory Comparative Study of the Impact of Experimental and Regression Methodologies on Salmonella Thermal Inactivation Parameters in Ground Beef.
    Hildebrandt IM; Marks BP; Juneja VK; Osoria M; Hall NO; Ryser ET
    J Food Prot; 2016 Jul; 79(7):1097-106. PubMed ID: 27357028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the survival of Salmonella spp. in chorizos.
    Hajmeer M; Basheer I; Hew C; Cliver DO
    Int J Food Microbiol; 2006 Mar; 107(1):59-67. PubMed ID: 16303199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating microbial growth parameters from non-isothermal data: a case study with Clostridium perfringens.
    Smith-Simpson S; Corradini MG; Normand MD; Peleg M; Schaffner DW
    Int J Food Microbiol; 2007 Sep; 118(3):294-303. PubMed ID: 17804106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating microbial inactivation parameters from survival curves obtained under varying conditions--the linear case.
    Peleg M; Normand MD; Campanella OH
    Bull Math Biol; 2003 Mar; 65(2):219-34. PubMed ID: 12675330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling microbial survival during exposure to a lethal agent with varying intensity.
    Peleg M; Penchina CM
    Crit Rev Food Sci Nutr; 2000 Mar; 40(2):159-72. PubMed ID: 10770273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.