These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22244271)

  • 1. Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment.
    Luo X; Zheng Z; Greaves J; Cooper WJ; Song W
    Water Res; 2012 Mar; 46(4):1327-36. PubMed ID: 22244271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions.
    Xu H; Cooper WJ; Jung J; Song W
    Water Res; 2011 Jan; 45(2):632-8. PubMed ID: 20813393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical transformation of terbutaline (pharmaceutical) in simulated natural waters: degradation kinetics and mechanisms.
    Yang W; Ben Abdelmelek S; Zheng Z; An T; Zhang D; Song W
    Water Res; 2013 Nov; 47(17):6558-65. PubMed ID: 24053937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical fate of atorvastatin (lipitor) in simulated natural waters.
    Razavi B; Ben Abdelmelek S; Song W; O'Shea KE; Cooper WJ
    Water Res; 2011 Jan; 45(2):625-31. PubMed ID: 20801479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine.
    Latch DE; Stender BL; Packer JL; Arnold WA; McNeill K
    Environ Sci Technol; 2003 Aug; 37(15):3342-50. PubMed ID: 12966980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes.
    Jeong J; Song W; Cooper WJ; Jung J; Greaves J
    Chemosphere; 2010 Jan; 78(5):533-40. PubMed ID: 20022625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid.
    Santoke H; Song W; Cooper WJ; Peake BM
    J Hazard Mater; 2012 May; 217-218():382-90. PubMed ID: 22487138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the photochemical fate of ibuprofen in surface waters.
    Vione D; Maddigapu PR; De Laurentiis E; Minella M; Pazzi M; Maurino V; Minero C; Kouras S; Richard C
    Water Res; 2011 Dec; 45(20):6725-36. PubMed ID: 22048018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent.
    Ryan CC; Tan DT; Arnold WA
    Water Res; 2011 Jan; 45(3):1280-6. PubMed ID: 21044793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical fate of beta-blockers in NOM enriched waters.
    Wang L; Xu H; Cooper WJ; Song W
    Sci Total Environ; 2012 Jun; 426():289-95. PubMed ID: 22503673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.
    Grebel JE; Pignatello JJ; Mitch WA
    Environ Sci Technol; 2010 Sep; 44(17):6822-8. PubMed ID: 20681567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations.
    Lastre-Acosta AM; Barberato B; Parizi MPS; Teixeira ACSC
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4337-4347. PubMed ID: 29931641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodegradation kinetics of p-tert-octylphenol, 4-tert-octylphenoxy-acetic acid and ibuprofen under simulated solar conditions in surface water.
    Xu Y; Nguyen TV; Reinhard M; Gin KY
    Chemosphere; 2011 Oct; 85(5):790-6. PubMed ID: 21745677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes.
    Jeong J; Jung J; Cooper WJ; Song W
    Water Res; 2010 Aug; 44(15):4391-8. PubMed ID: 20621324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-radical-induced oxidative and reductive degradation of N,N'-diethyl-m-toluamide (DEET): Kinetic studies and degradation pathway.
    Song W; Cooper WJ; Peake BM; Mezyk SP; Nickelsen MG; O'Shea KE
    Water Res; 2009 Feb; 43(3):635-42. PubMed ID: 19054538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental photochemical fate of selected pharmaceutical compounds in natural and reconstituted Suwannee River water: Role of reactive species in indirect photolysis.
    Santoke H; Cooper WJ
    Sci Total Environ; 2017 Feb; 580():626-631. PubMed ID: 28011020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters.
    Chen J; Pehkonen SO; Lin CJ
    Water Res; 2003 May; 37(10):2496-504. PubMed ID: 12727262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments.
    Yu H; Nie E; Xu J; Yan S; Cooper WJ; Song W
    Water Res; 2013 Apr; 47(5):1909-18. PubMed ID: 23384514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H(2)O(2) advanced oxidation processes.
    Baeza C; Knappe DR
    Water Res; 2011 Oct; 45(15):4531-43. PubMed ID: 21714983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.