These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 22244311)

  • 1. The genetic control of growth rate: a systems biology study in yeast.
    Pir P; Gutteridge A; Wu J; Rash B; Kell DB; Zhang N; Oliver SG
    BMC Syst Biol; 2012 Jan; 6():4. PubMed ID: 22244311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient control of eukaryote cell growth: a systems biology study in yeast.
    Gutteridge A; Pir P; Castrillo JI; Charles PD; Lilley KS; Oliver SG
    BMC Biol; 2010 May; 8():68. PubMed ID: 20497545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures.
    Delneri D; Hoyle DC; Gkargkas K; Cross EJ; Rash B; Zeef L; Leong HS; Davey HM; Hayes A; Kell DB; Griffith GW; Oliver SG
    Nat Genet; 2008 Jan; 40(1):113-7. PubMed ID: 18157128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copy-number variation of cancer-gene orthologs is sufficient to induce cancer-like symptoms in Saccharomyces cerevisiae.
    de Clare M; Oliver SG
    BMC Biol; 2013 Mar; 11():24. PubMed ID: 23531409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.
    Fazio A; Jewett MC; Daran-Lapujade P; Mustacchi R; Usaite R; Pronk JT; Workman CT; Nielsen J
    BMC Genomics; 2008 Jul; 9():341. PubMed ID: 18638364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilevel regulation of growth rate in yeast revealed using systems biology.
    Ramanathan A; Schreiber SL
    J Biol; 2007; 6(2):3. PubMed ID: 17472733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth control of the eukaryote cell: a systems biology study in yeast.
    Castrillo JI; Zeef LA; Hoyle DC; Zhang N; Hayes A; Gardner DC; Cornell MJ; Petty J; Hakes L; Wardleworth L; Rash B; Brown M; Dunn WB; Broadhurst D; O'Donoghue K; Hester SS; Dunkley TP; Hart SR; Swainston N; Li P; Gaskell SJ; Paton NW; Lilley KS; Kell DB; Oliver SG
    J Biol; 2007; 6(2):4. PubMed ID: 17439666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From gene networks to gene function.
    Schlitt T; Palin K; Rung J; Dietmann S; Lappe M; Ukkonen E; Brazma A
    Genome Res; 2003 Dec; 13(12):2568-76. PubMed ID: 14656964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae.
    Regenberg B; Grotkjaer T; Winther O; Fausbøll A; Akesson M; Bro C; Hansen LK; Brunak S; Nielsen J
    Genome Biol; 2006; 7(11):R107. PubMed ID: 17105650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterozygous mutations cause genetic instability in a yeast model of cancer evolution.
    Coelho MC; Pinto RM; Murray AW
    Nature; 2019 Feb; 566(7743):275-278. PubMed ID: 30700905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast.
    Nishizawa M; Komai T; Katou Y; Shirahige K; Ito T; Toh-E A
    PLoS Biol; 2008 Dec; 6(12):2817-30. PubMed ID: 19108609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns.
    López MC; Baker HV
    J Bacteriol; 2000 Sep; 182(17):4970-8. PubMed ID: 10940042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation.
    Wu J; Zhang N; Hayes A; Panoutsopoulou K; Oliver SG
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3148-53. PubMed ID: 14973188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
    Brauer MJ; Huttenhower C; Airoldi EM; Rosenstein R; Matese JC; Gresham D; Boer VM; Troyanskaya OG; Botstein D
    Mol Biol Cell; 2008 Jan; 19(1):352-67. PubMed ID: 17959824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haploinsufficiency and the sex chromosomes from yeasts to humans.
    de Clare M; Pir P; Oliver SG
    BMC Biol; 2011 Feb; 9():15. PubMed ID: 21356089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Budding yeast mutants showing constitutive basal levels of expression of DNA synthesis genes.
    Johnston LH; Johnson AL
    Mol Gen Genet; 1993 Jul; 240(1):36-42. PubMed ID: 8341263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach.
    Linde J; Hortschansky P; Fazius E; Brakhage AA; Guthke R; Haas H
    BMC Syst Biol; 2012 Jan; 6():6. PubMed ID: 22260221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast.
    Deutschbauer AM; Jaramillo DF; Proctor M; Kumm J; Hillenmeyer ME; Davis RW; Nislow C; Giaever G
    Genetics; 2005 Apr; 169(4):1915-25. PubMed ID: 15716499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise minimization in eukaryotic gene expression.
    Fraser HB; Hirsh AE; Giaever G; Kumm J; Eisen MB
    PLoS Biol; 2004 Jun; 2(6):e137. PubMed ID: 15124029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.