These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22244456)

  • 21. Biting releases constraints on moray eel feeding kinematics.
    Mehta RS; Wainwright PC
    J Exp Biol; 2007 Feb; 210(Pt 3):495-504. PubMed ID: 17234619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid dynamics of the larval zebrafish pectoral fin and the role of fin bending in fluid transport.
    Green MH; Curet OM; Patankar NA; Hale ME
    Bioinspir Biomim; 2013 Mar; 8(1):016002. PubMed ID: 23220841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Batoid locomotion: effects of speed on pectoral fin deformation in the little skate,
    Di Santo V; Blevins EL; Lauder GV
    J Exp Biol; 2017 Feb; 220(Pt 4):705-712. PubMed ID: 27965272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3037-43. PubMed ID: 19749095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Archer fish jumping prey capture: kinematics and hydrodynamics.
    Shih AM; Mendelson L; Techet AH
    J Exp Biol; 2017 Apr; 220(Pt 8):1411-1422. PubMed ID: 28424312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanisms underlying the exceptional adaptations of batoid fins.
    Nakamura T; Klomp J; Pieretti J; Schneider I; Gehrke AR; Shubin NH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15940-5. PubMed ID: 26644578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.
    Lauder GV; Madden PG; Mittal R; Dong H; Bozkurttas M
    Bioinspir Biomim; 2006 Dec; 1(4):S25-34. PubMed ID: 17671315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.
    Phelan C; Tangorra J; Lauder G; Hale M
    Bioinspir Biomim; 2010 Sep; 5(3):035003. PubMed ID: 20729572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid-structure interactions of skeleton-reinforced fins: performance analysis of a paired fin in lift-based propulsion.
    Shoele K; Zhu Q
    J Exp Biol; 2009 Aug; 212(Pt 16):2679-90. PubMed ID: 19648413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): explaining phylogenetic variation with geometric morphometrics.
    Franklin O; Palmer C; Dyke G
    J Morphol; 2014 Oct; 275(10):1173-86. PubMed ID: 24797832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea).
    Huang W; Hongjamrassilp W; Jung JY; Hastings PA; Lubarda VA; McKittrick J
    Acta Biomater; 2017 Mar; 51():393-407. PubMed ID: 28069513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional implications of morphological specializations among the pectoral fin rays of the benthic longhorn sculpin.
    Taft NK; Taft BN
    J Exp Biol; 2012 Aug; 215(Pt 15):2703-10. PubMed ID: 22786648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming.
    Green MH; Ho RK; Hale ME
    J Exp Biol; 2011 Sep; 214(Pt 18):3111-23. PubMed ID: 21865524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamics of prey capture in sharks: effects of substrate.
    Nauwelaerts S; Wilga C; Sanford C; Lauder G
    J R Soc Interface; 2007 Apr; 4(13):341-5. PubMed ID: 17251144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae).
    Rice AN; Westneat MW
    J Exp Biol; 2005 Sep; 208(Pt 18):3503-18. PubMed ID: 16155223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Life in the flow lane: differences in pectoral fin morphology suggest transitions in station-holding demand across species of marine sculpin.
    Kane EA; Higham TE
    Zoology (Jena); 2012 Aug; 115(4):223-32. PubMed ID: 22789830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.