These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22244759)

  • 1. Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824.
    Cellitti SE; Shaffer J; Jones DH; Mukherjee T; Gurumurthy M; Bursulaya B; Boshoff HI; Choi I; Nayyar A; Lee YS; Cherian J; Niyomrattanakit P; Dick T; Manjunatha UH; Barry CE; Spraggon G; Geierstanger BH
    Structure; 2012 Jan; 20(1):101-12. PubMed ID: 22244759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles.
    Gurumurthy M; Mukherjee T; Dowd CS; Singh R; Niyomrattanakit P; Tay JA; Nayyar A; Lee YS; Cherian J; Boshoff HI; Dick T; Barry CE; Manjunatha UH
    FEBS J; 2012 Jan; 279(1):113-25. PubMed ID: 22023140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation state of F420H2 in the prodrug-activating deazaflavin dependent nitroreductase (Ddn) from Mycobacterium tuberculosis.
    Mohamed AE; Ahmed FH; Arulmozhiraja S; Lin CY; Taylor MC; Krausz ER; Jackson CJ; Coote ML
    Mol Biosyst; 2016 Apr; 12(4):1110-3. PubMed ID: 26876228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bactericidal activity of PA-824 against Mycobacterium tuberculosis under anaerobic conditions and computational analysis of its novel analogues against mutant Ddn receptor.
    Somasundaram S; Anand RS; Venkatesan P; Paramasivan CN
    BMC Microbiol; 2013 Oct; 13():218. PubMed ID: 24083570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release.
    Singh R; Manjunatha U; Boshoff HI; Ha YH; Niyomrattanakit P; Ledwidge R; Dowd CS; Lee IY; Kim P; Zhang L; Kang S; Keller TH; Jiricek J; Barry CE
    Science; 2008 Nov; 322(5906):1392-5. PubMed ID: 19039139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamic assisted investigation on impact of mutations in deazaflavin dependent nitroreductase against pretomanid: a computational study.
    Singh R; Shaheer M; Sobhia ME
    J Biomol Struct Dyn; 2023 Jul; 41(10):4421-4443. PubMed ID: 35574601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of 2-Nitroimidazooxazine Derivatives as Deazaflavin-Dependent Nitroreductase (Ddn) Activators as Anti-Mycobacterial Agents Based on 3D QSAR, HQSAR, and Docking Study with In Silico Prediction of Activity and Toxicity.
    Gupta N; Vyas VK; Patel BD; Ghate M
    Interdiscip Sci; 2019 Jun; 11(2):191-205. PubMed ID: 28895050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis.
    Haver HL; Chua A; Ghode P; Lakshminarayana SB; Singhal A; Mathema B; Wintjens R; Bifani P
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5316-23. PubMed ID: 26100695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of ((s)-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-amino PA-824).
    Cherian J; Choi I; Nayyar A; Manjunatha UH; Mukherjee T; Lee YS; Boshoff HI; Singh R; Ha YH; Goodwin M; Lakshminarayana SB; Niyomrattanakit P; Jiricek J; Ravindran S; Dick T; Keller TH; Dartois V; Barry CE
    J Med Chem; 2011 Aug; 54(16):5639-59. PubMed ID: 21755942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationships of antitubercular nitroimidazoles. 1. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles.
    Kim P; Zhang L; Manjunatha UH; Singh R; Patel S; Jiricek J; Keller TH; Boshoff HI; Barry CE; Dowd CS
    J Med Chem; 2009 Mar; 52(5):1317-28. PubMed ID: 19209889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Mycothiol-Dependent Nitroreductase from Mycobacterium tuberculosis.
    Negri A; Javidnia P; Mu R; Zhang X; Vendome J; Gold B; Roberts J; Barman D; Ioerger T; Sacchettini JC; Jiang X; Burns-Huang K; Warrier T; Ling Y; Warren JD; Oren DA; Beuming T; Wang H; Wu J; Li H; Rhee KY; Nathan CF; Liu G; Somersan-Karakaya S
    ACS Infect Dis; 2018 May; 4(5):771-787. PubMed ID: 29465985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vitro Susceptibility of Mycobacteria Against PA-824 to Identify Key Residues of Ddn, the Deazoflavin-Dependent Nitroreductase from
    Zhang F; Li S; Wen S; Zhang T; Shang Y; Huo F; Xue Y; Li L; Pang Y
    Infect Drug Resist; 2020; 13():815-822. PubMed ID: 32210596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver.
    Dogra M; Palmer BD; Bashiri G; Tingle MD; Shinde SS; Anderson RF; O'Toole R; Baker EN; Denny WA; Helsby NA
    Br J Pharmacol; 2011 Jan; 162(1):226-36. PubMed ID: 20955364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering.
    Lee BM; Harold LK; Almeida DV; Afriat-Jurnou L; Aung HL; Forde BM; Hards K; Pidot SJ; Ahmed FH; Mohamed AE; Taylor MC; West NP; Stinear TP; Greening C; Beatson SA; Nuermberger EL; Cook GM; Jackson CJ
    PLoS Pathog; 2020 Feb; 16(2):e1008287. PubMed ID: 32032366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis Involved in Bioreductive Activation of PA-824.
    Cellitti SE; Shaffer J; Jones DH; Mukherjee T; Gurumurthy M; Bursulaya B; Boshoff HI; Choi I; Nayyar A; Lee YS; Cherian J; Niyomrattanakit P; Dick T; Manjunatha UH; Barry CE; Spraggon G; Geierstanger BH
    Structure; 2013 Jan; 21(1):191. PubMed ID: 28903033
    [No Abstract]   [Full Text] [Related]  

  • 16. Nitroimidazopyrazinones with Oral Activity against Tuberculosis and Chagas Disease in Mouse Models of Infection.
    Ang CW; Lee BM; Jackson CJ; Wang Y; Franzblau SG; Francisco AF; Kelly JM; Bernhardt PV; Tan L; West NP; Sykes ML; Hinton AO; Bolisetti R; Avery VM; Cooper MA; Blaskovich MAT
    J Med Chem; 2022 Oct; 65(19):13125-13142. PubMed ID: 36111399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria.
    Selengut JD; Haft DH
    J Bacteriol; 2010 Nov; 192(21):5788-98. PubMed ID: 20675471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of a Dehalogenase into a Nitroreductase by Swapping its Flavin Cofactor with a 5-Deazaflavin Analogue.
    Su Q; Boucher PA; Rokita SE
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10862-10866. PubMed ID: 28666054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine.
    Chaudhari HK; Pahelkar A
    Infect Disord Drug Targets; 2019; 19(2):145-166. PubMed ID: 30324898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of reduced MsAcg, a putative nitroreductase from Mycobacterium smegmatis and a close homologue of Mycobacterium tuberculosis Acg.
    Chauviac FX; Bommer M; Yan J; Parkin G; Daviter T; Lowden P; Raven EL; Thalassinos K; Keep NH
    J Biol Chem; 2012 Dec; 287(53):44372-83. PubMed ID: 23148223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.