These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22244852)

  • 1. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel.
    Wu C; Wei J; Lin PJ; Tu L; Deutsch C; Johnson AE; Sachs MS
    J Mol Biol; 2012 Mar; 416(4):518-33. PubMed ID: 22244852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
    Wei J; Wu C; Sachs MS
    Mol Cell Biol; 2012 Jul; 32(13):2396-406. PubMed ID: 22508989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence requirements for ribosome stalling by the arginine attenuator peptide.
    Spevak CC; Ivanov IP; Sachs MS
    J Biol Chem; 2010 Dec; 285(52):40933-42. PubMed ID: 20884617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionarily conserved features of the arginine attenuator peptide provide the necessary requirements for its function in translational regulation.
    Fang P; Wang Z; Sachs MS
    J Biol Chem; 2000 Sep; 275(35):26710-9. PubMed ID: 10818103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs.
    Wang Z; Gaba A; Sachs MS
    J Biol Chem; 1999 Dec; 274(53):37565-74. PubMed ID: 10608810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
    Bhushan S; Meyer H; Starosta AL; Becker T; Mielke T; Berninghausen O; Sattler M; Wilson DN; Beckmann R
    Mol Cell; 2010 Oct; 40(1):138-46. PubMed ID: 20932481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it.
    Wang Z; Fang P; Sachs MS
    Mol Cell Biol; 1998 Dec; 18(12):7528-36. PubMed ID: 9819438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nascent polypeptide domain that can regulate translation elongation.
    Fang P; Spevak CC; Wu C; Sachs MS
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4059-64. PubMed ID: 15020769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame.
    Hood HM; Spevak CC; Sachs MS
    Fungal Genet Biol; 2007 Feb; 44(2):93-104. PubMed ID: 16979358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa.
    Wang Z; Sachs MS
    Mol Cell Biol; 1997 Sep; 17(9):4904-13. PubMed ID: 9271370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A UV-induced mutation in neurospora that affects translational regulation in response to arginine.
    Freitag M; Dighde N; Sachs MS
    Genetics; 1996 Jan; 142(1):117-27. PubMed ID: 8770589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction.
    Takamatsu S; Ohashi Y; Onoue N; Tajima Y; Imamichi T; Yonezawa S; Morimoto K; Onouchi H; Yamashita Y; Naito S
    Nucleic Acids Res; 2020 Feb; 48(4):1985-1999. PubMed ID: 31875230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence.
    Raue U; Oellerer S; Rospert S
    J Biol Chem; 2007 Mar; 282(11):7809-16. PubMed ID: 17229726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center.
    Ramu H; Vázquez-Laslop N; Klepacki D; Dai Q; Piccirilli J; Micura R; Mankin AS
    Mol Cell; 2011 Feb; 41(3):321-30. PubMed ID: 21292164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide.
    Vázquez-Laslop N; Ramu H; Klepacki D; Kannan K; Mankin AS
    EMBO J; 2010 Sep; 29(18):3108-17. PubMed ID: 20676057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Neurospora crassa arg-2 locus. Structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase.
    Orbach MJ; Sachs MS; Yanofsky C
    J Biol Chem; 1990 Jul; 265(19):10981-7. PubMed ID: 2141606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative genomics study on the effect of individual amino acids on ribosome stalling.
    Sabi R; Tuller T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S5. PubMed ID: 26449596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active center cleft residues of pokeweed antiviral protein mediate its high-affinity binding to the ribosomal protein L3.
    Rajamohan F; Ozer Z; Mao C; Uckun FM
    Biochemistry; 2001 Aug; 40(31):9104-14. PubMed ID: 11478877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational regulation in response to changes in amino acid availability in Neurospora crassa.
    Luo Z; Freitag M; Sachs MS
    Mol Cell Biol; 1995 Oct; 15(10):5235-45. PubMed ID: 7565672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation regulation via nascent polypeptide-mediated ribosome stalling.
    Wilson DN; Arenz S; Beckmann R
    Curr Opin Struct Biol; 2016 Apr; 37():123-33. PubMed ID: 26859868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.