BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22244899)

  • 1. Enhanced co-production of S-adenosylmethionine and glutathione by an ATP-oriented amino acid addition strategy.
    Wang Y; Wang D; Wei G; Shao N
    Bioresour Technol; 2012 Mar; 107():19-24. PubMed ID: 22244899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis.
    Liang G; Liao X; Du G; Chen J
    J Appl Microbiol; 2008 Nov; 105(5):1432-40. PubMed ID: 18828786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate.
    Wang Y; Wang D; Wei G; Wang C
    Bioresour Technol; 2013 Mar; 131():28-32. PubMed ID: 23334314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved S-adenosylmethionine and glutathione biosynthesis by heterologous expression of an ATP6 gene in Candida utilis.
    Xu R; Wang D; Wang C; Zhang G; Wei G
    J Basic Microbiol; 2018 Oct; 58(10):875-882. PubMed ID: 30063253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis.
    Liang G; Du G; Chen J
    Lett Appl Microbiol; 2008 May; 46(5):507-12. PubMed ID: 18363652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of por1 gene in Candida utilis improves co-production of S-adenosylmethionine and glutathione.
    Wang D; Li D; Zhang G; Wang C; Wei G
    J Biotechnol; 2019 Jan; 290():16-23. PubMed ID: 30553804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of L: -methionine feeding strategy for improving S-adenosyl-L: -methionine production by methionine adenosyltransferase overexpressed Pichia pastoris.
    Hu H; Qian J; Chu J; Wang Y; Zhuang Y; Zhang S
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1105-14. PubMed ID: 19404638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy.
    Nie W; Wei G; Du G; Li Y; Chen J
    Lett Appl Microbiol; 2005; 40(5):378-84. PubMed ID: 15836743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine.
    Colell A; García-Ruiz C; Morales A; Ballesta A; Ookhtens M; Rodés J; Kaplowitz N; Fernández-Checa JC
    Hepatology; 1997 Sep; 26(3):699-708. PubMed ID: 9303501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fermentation conditions for production of glutathione by recombinant Escherichia coli].
    Li Y; Chen J; Mao Y; Lun S; Koo YM
    Wei Sheng Wu Xue Bao; 1999 Aug; 39(4):355-61. PubMed ID: 12555576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of H2O2 stress on glutathione production by Candida utilis].
    Xianyan L; Wenyan Z; Zhi Z; Jian C; Du G
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1046-50. PubMed ID: 18807990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy to enhance glutathione production by multiple H2O2 induced oxidative stresses in Candida utilis.
    Liang G; Liao X; Du G; Chen J
    Bioresour Technol; 2009 Jan; 100(1):350-5. PubMed ID: 18650087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.
    Chen H; Wang Z; Wang Z; Dou J; Zhou C
    World J Microbiol Biotechnol; 2016 Apr; 32(4):56. PubMed ID: 26925618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of improved intracellular organic selenium and glutathione contents in selenium-enriched Candida utilis by acid stress.
    Zhang GC; Wang DH; Wang DH; Wei GY
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2131-2141. PubMed ID: 27896382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pre-L-methionine feeding strategy for S-adenosyl-L-methionine fermentative production].
    Wang J; Tan T
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1824-7. PubMed ID: 19149199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Saccharomyces cerevisiae.
    Wang M; Sun J; Xue F; Shang F; Wang Z; Tan T
    Appl Biochem Biotechnol; 2012 Sep; 168(1):198-205. PubMed ID: 22143994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP dynamic regeneration strategy for enhancing co-production of glutathione and S-adenosylmethionine in Escherichia coli.
    Chen YW; Liao Y; Kong WZ; Wang SH
    Biotechnol Lett; 2020 Dec; 42(12):2581-2587. PubMed ID: 32808198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione is involved in physiological response of Candida utilis to acid stress.
    Wang DH; Zhang JL; Dong YY; Wei GY; Qi B
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10669-79. PubMed ID: 26346268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of dissolved oxygen and pH on Candida utilis batch fermentation of glutathione].
    Wei GY; Li Y; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):734-9. PubMed ID: 15971589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biosynthesis of glutathione: construction of ATP regeneration system between recombinant E. coli and S. cerevisiae].
    Li Y; Li H; Lin J; Chen J
    Wei Sheng Wu Xue Bao; 2001 Apr; 41(2):191-7. PubMed ID: 12549025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.