These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47 related articles for article (PubMed ID: 22244981)
1. Statistics of N-terminal alignment as a guide for refining prokaryotic gene annotation. Sato N; Tajima N Genomics; 2012 Mar; 99(3):138-43. PubMed ID: 22244981 [TBL] [Abstract][Full Text] [Related]
2. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
3. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
4. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. Maurer-Stroh S; Eisenhaber B; Eisenhaber F J Mol Biol; 2002 Apr; 317(4):523-40. PubMed ID: 11955007 [TBL] [Abstract][Full Text] [Related]
5. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. Maurer-Stroh S; Eisenhaber B; Eisenhaber F J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008 [TBL] [Abstract][Full Text] [Related]
6. Protein identification with N and C-terminal sequence tags in proteome projects. Wilkins MR; Gasteiger E; Tonella L; Ou K; Tyler M; Sanchez JC; Gooley AA; Walsh BJ; Bairoch A; Appel RD; Williams KL; Hochstrasser DF J Mol Biol; 1998 May; 278(3):599-608. PubMed ID: 9600841 [TBL] [Abstract][Full Text] [Related]
7. Targeted analysis of protein termini. Dormeyer W; Mohammed S; Breukelen Bv; Krijgsveld J; Heck AJ J Proteome Res; 2007 Dec; 6(12):4634-45. PubMed ID: 17927228 [TBL] [Abstract][Full Text] [Related]
8. Cyano2Dbase updated: linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Sazuka T; Yamaguchi M; Ohara O Electrophoresis; 1999 Aug; 20(11):2160-71. PubMed ID: 10493121 [TBL] [Abstract][Full Text] [Related]
9. A novel phototaxis receptor hidden in the cyanobacterial genome. Zhulin IB J Mol Microbiol Biotechnol; 2000 Oct; 2(4):491-3. PubMed ID: 11075922 [No Abstract] [Full Text] [Related]
10. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078 [TBL] [Abstract][Full Text] [Related]
11. Gene structure prediction by spliced alignment of genomic DNA with protein sequences: increased accuracy by differential splice site scoring. Usuka J; Brendel V J Mol Biol; 2000 Apr; 297(5):1075-85. PubMed ID: 10764574 [TBL] [Abstract][Full Text] [Related]
12. [Correction of five different types of errors of model REFSEQs appeared in NCBI human gene database only by using two novel human genes C17orf32 and ZNF362]. Zhang DL; Li YD; Ji L Yi Chuan Xue Bao; 2004 Apr; 31(4):325-34. PubMed ID: 15487498 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of the genomes of cyanobacteria and plants. Sato N Genome Inform; 2002; 13():173-82. PubMed ID: 14571386 [TBL] [Abstract][Full Text] [Related]
14. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. Sun J; Zeng AP BMC Bioinformatics; 2004 Aug; 5():112. PubMed ID: 15312235 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740 [TBL] [Abstract][Full Text] [Related]
16. Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Gupta RS Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2510-26. PubMed ID: 19622649 [TBL] [Abstract][Full Text] [Related]
17. GeneTrees: a phylogenomics resource for prokaryotes. Tian Y; Dickerman AW Nucleic Acids Res; 2007 Jan; 35(Database issue):D328-31. PubMed ID: 17151073 [TBL] [Abstract][Full Text] [Related]
18. Identification of an alternative translation initiation site for the Pantoea ananatis lycopene cyclase (crtY) gene in E. coli and its evolutionary conservation. Kim SW; Jung WH; Ryu JM; Kim JB; Jang HW; Jo YB; Jung JK; Kim JH Protein Expr Purif; 2008 Mar; 58(1):23-31. PubMed ID: 18096401 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of the ctaC (coxB) gene as part of an operon encoding subunits I, II, and III of the cytochrome c oxidase (cytochrome aa3) in the cyanobacterium Synechocystis PCC 6803. Alge D; Peschek GA Biochem Biophys Res Commun; 1993 Feb; 191(1):9-17. PubMed ID: 8383492 [TBL] [Abstract][Full Text] [Related]
20. Genome bias influences amino acid choices: analysis of amino acid substitution and re-compilation of substitution matrices exclusive to an AT-biased genome. Paila U; Kondam R; Ranjan A Nucleic Acids Res; 2008 Dec; 36(21):6664-75. PubMed ID: 18948281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]