BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 22244995)

  • 1. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification.
    McMahan L; Grunden AM; Devine AA; Sobsey MD
    Water Res; 2012 Apr; 46(6):1693-704. PubMed ID: 22244995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the H2S method to detect bacteria of fecal origin by cultured and molecular methods.
    McMahan L; Devine AA; Grunden AM; Sobsey MD
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1287-95. PubMed ID: 22038242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic bacteria associated with oysters (Crassostrea brasiliana) and estuarine water along the south coast of Brazil.
    Ristori CA; Iaria ST; Gelli DS; Rivera IN
    Int J Environ Health Res; 2007 Aug; 17(4):259-69. PubMed ID: 17613090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed.
    Fremaux B; Gritzfeld J; Boa T; Yost CK
    Water Res; 2009 Nov; 43(19):4838-49. PubMed ID: 19604534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suitability of the H2S method for testing untreated and chlorinated water supplies.
    Nair J; Gibbs R; Mathew K; Ho GE
    Water Sci Technol; 2001; 44(6):119-26. PubMed ID: 11700650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR.
    Ahmed W; Brandes H; Gyawali P; Sidhu JP; Toze S
    Water Res; 2014 Apr; 53():361-9. PubMed ID: 24531256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative studies of fresh and seawater for the determination of total coliform and fecal coliform bacteria according to the European Economic Community guideline 76/160 (bathing water) by the use of the most-probable-number method with BRILA-MUG broth and differentiation according to the drinking water ordinance].
    Havemeister G; Aleksic S; Bockemühl J; Heinemeyer EA; Müller HE; Von Pritzbuer E
    Zentralbl Hyg Umweltmed; 1991 May; 191(5-6):523-38. PubMed ID: 1883475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant.
    Okeke BC; Thomson MS; Moss EM
    Sci Total Environ; 2011 Nov; 409(23):4979-85. PubMed ID: 21920587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of molecular community analysis methods for discerning fecal sources and human waste.
    Cao Y; Van De Werfhorst LC; Dubinsky EA; Badgley BD; Sadowsky MJ; Andersen GL; Griffith JF; Holden PA
    Water Res; 2013 Nov; 47(18):6862-72. PubMed ID: 23880215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the source of fecal contamination in recreational waters.
    Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ
    J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groundwater microbiological quality in Canadian drinking water municipal wells.
    Locas A; Barthe C; Margolin AB; Payment P
    Can J Microbiol; 2008 Jun; 54(6):472-8. PubMed ID: 18535633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.
    Viau EJ; Goodwin KD; Yamahara KM; Layton BA; Sassoubre LM; Burns SL; Tong HI; Wong SH; Lu Y; Boehm AB
    Water Res; 2011 May; 45(11):3279-90. PubMed ID: 21492899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study.
    Harwood VJ; Wiggins B; Hagedorn C; Ellender RD; Gooch J; Kern J; Samadpour M; Chapman AC; Robinson BJ; Thompson BC
    J Water Health; 2003 Dec; 1(4):153-66. PubMed ID: 15382721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new molecular approach based on qPCR for the quantification of fecal bacteria in contaminated marine sediments.
    Luna GM; Dell'Anno A; Pietrangeli B; Danovaro R
    J Biotechnol; 2012 Feb; 157(4):446-53. PubMed ID: 21839120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds.
    Unno T; Jang J; Han D; Kim JH; Sadowsky MJ; Kim OS; Chun J; Hur HG
    Environ Sci Technol; 2010 Oct; 44(20):7777-82. PubMed ID: 20853824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints.
    Somarelli JA; Makarewicz JC; Sia R; Simon R
    J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between Bacteroides 16S rRNA genetic markers and presence of bacterial enteric pathogens and conventional fecal indicators.
    Savichtcheva O; Okayama N; Okabe S
    Water Res; 2007 Aug; 41(16):3615-28. PubMed ID: 17507075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters.
    Jenkins MB; Endale DM; Fisher DS
    J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir.
    Wang Z; Xiao G; Zhou N; Qi W; Han L; Ruan Y; Guo D; Zhou H
    J Environ Sci (China); 2015 Dec; 38():42-51. PubMed ID: 26702967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fecal indicator bacteria variability in samples pumped from monitoring wells.
    Kozuskanich J; Novakowski KS; Anderson BC
    Ground Water; 2011; 49(1):43-52. PubMed ID: 20497242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.