These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22245248)

  • 41. An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis.
    Celekli A; Yavuzatmaca M; Bozkurt H
    J Hazard Mater; 2010 Jan; 173(1-3):123-9. PubMed ID: 19748176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite.
    Chen H; Wang A
    J Hazard Mater; 2009 Jun; 165(1-3):223-31. PubMed ID: 19008046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.
    Ozcan A; Ozcan AS; Tunali S; Akar T; Kiran I
    J Hazard Mater; 2005 Sep; 124(1-3):200-8. PubMed ID: 15990228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solution.
    Tan WS; Ting AS
    Bioresour Technol; 2012 Nov; 123():290-5. PubMed ID: 22940332
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.
    Sari A; Tuzen M; Citak D; Soylak M
    J Hazard Mater; 2007 Sep; 148(1-2):387-94. PubMed ID: 17386972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.
    Tuzen M; Sari A; Mendil D; Soylak M
    J Hazard Mater; 2009 Sep; 169(1-3):263-70. PubMed ID: 19380200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of copper ions from aqueous solutions by hazelnut shell.
    Demirbaş O; Karadağ A; Alkan M; Doğan M
    J Hazard Mater; 2008 May; 153(1-2):677-84. PubMed ID: 17950528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin--a biosorbent.
    Mohan D; Pittman CU; Steele PH
    J Colloid Interface Sci; 2006 May; 297(2):489-504. PubMed ID: 16375914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The new application of biosorption properties of Enteromorpha prolifera.
    Michalak I; Chojnacka K
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1540-56. PubMed ID: 19404780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Biomass of Rhizopus oligosporus as an adsorbent for metal ions].
    Castro F; Viedma P; Cotorás D
    Microbiologia; 1992 Nov; 8(2):94-105. PubMed ID: 1492955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of the copper (II) ions dynamic removal from a medium by using mathematical models with analytical solution.
    Borba CE; da Silva EA; Fagundes-Klen MR; Kroumov AD; Guirardello R
    J Hazard Mater; 2008 Mar; 152(1):366-72. PubMed ID: 17706867
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jul; 166(2-3):1488-94. PubMed ID: 19188018
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sorption of copper(II) ion from aqueous solution by Tectona grandis l.f. (teak leaves powder).
    King P; Srinivas P; Kumar YP; Prasad VS
    J Hazard Mater; 2006 Aug; 136(3):560-6. PubMed ID: 16443324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of copper(II) from aqueous solution by Jordanian pottery materials.
    Khazali O; Abu-El-Halawa R; Al-Sou'od K
    J Hazard Mater; 2007 Jan; 139(1):67-71. PubMed ID: 16870335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.
    Ozdes D; Gundogdu A; Kemer B; Duran C; Senturk HB; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1480-7. PubMed ID: 19167162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of copper from an electroplating industrial effluent using the native and modified spirogyra.
    Ilyas N; Ilyas S; Sajjad-Ur-Rahman SU; Yousaf S; Zia A; Sattar S
    Water Sci Technol; 2018 Aug; 78(1-2):147-155. PubMed ID: 30101797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species.
    Gupta VK; Shrivastava AK; Jain N
    Water Res; 2001 Dec; 35(17):4079-85. PubMed ID: 11791837
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake).
    Katircioğlu H; Aslim B; Rehber Türker A; Atici T; Beyatli Y
    Bioresour Technol; 2008 Jul; 99(10):4185-91. PubMed ID: 17964143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.