These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22245346)

  • 41. Reduced resting-state brain activity in the "default network" in normal aging.
    Damoiseaux JS; Beckmann CF; Arigita EJ; Barkhof F; Scheltens P; Stam CJ; Smith SM; Rombouts SA
    Cereb Cortex; 2008 Aug; 18(8):1856-64. PubMed ID: 18063564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined functional and causal connectivity analyses of language networks in children: a feasibility study.
    Wilke M; Lidzba K; Krägeloh-Mann I
    Brain Lang; 2009 Jan; 108(1):22-9. PubMed ID: 18952275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach.
    Eryilmaz H; Van De Ville D; Schwartz S; Vuilleumier P
    Neuroimage; 2011 Feb; 54(3):2481-91. PubMed ID: 20955802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension.
    Saur D; Schelter B; Schnell S; Kratochvil D; Küpper H; Kellmeyer P; Kümmerer D; Klöppel S; Glauche V; Lange R; Mader W; Feess D; Timmer J; Weiller C
    Neuroimage; 2010 Feb; 49(4):3187-97. PubMed ID: 19913624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing.
    Senden M; Goebel R; Deco G
    Neuroimage; 2012 May; 60(4):2274-84. PubMed ID: 22394674
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fast-FENICA method on resting state fMRI data.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2012 Jul; 209(1):1-12. PubMed ID: 22659001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in the brain intrinsic organization in both on-task state and post-task resting state.
    Wang Z; Liu J; Zhong N; Qin Y; Zhou H; Li K
    Neuroimage; 2012 Aug; 62(1):394-407. PubMed ID: 22569542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Directed connectivity of brain default networks in resting state using GCA and motif.
    Jiao Z; Wang H; Ma K; Zou L; Xiang J
    Front Biosci (Landmark Ed); 2017 Jun; 22(10):1634-1643. PubMed ID: 28410136
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of performance to detect default mode network among some algorithms applied to resting-state fMRI data.
    Tachikawa K; Izawa S; Ono Y; Kuriki S; Ishiyama A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1805-8. PubMed ID: 26736630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computation of resting state networks from fMRI through a measure of phase synchrony.
    Villafañe-Delgado M; Zhu DC; Aviyente S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1456-9. PubMed ID: 25570243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuroaging through the Lens of the Resting State Networks.
    Cieri F; Esposito R
    Biomed Res Int; 2018; 2018():5080981. PubMed ID: 29568755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.
    Minati L; Cercignani M; Chan D
    Med Eng Phys; 2013 Oct; 35(10):1532-9. PubMed ID: 23746911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic changes in network synchrony reveal resting-state functional networks.
    Vuksanović V; Hövel P
    Chaos; 2015 Feb; 25(2):023116. PubMed ID: 25725652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sparse representation of whole-brain fMRI signals for identification of functional networks.
    Lv J; Jiang X; Li X; Zhu D; Chen H; Zhang T; Zhang S; Hu X; Han J; Huang H; Zhang J; Guo L; Liu T
    Med Image Anal; 2015 Feb; 20(1):112-34. PubMed ID: 25476415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans.
    Rebollo I; Devauchelle AD; Béranger B; Tallon-Baudry C
    Elife; 2018 Mar; 7():. PubMed ID: 29561263
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional connectivity dynamics: modeling the switching behavior of the resting state.
    Hansen EC; Battaglia D; Spiegler A; Deco G; Jirsa VK
    Neuroimage; 2015 Jan; 105():525-35. PubMed ID: 25462790
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI.
    Al-Sharoa E; Al-Khassaweneh M; Aviyente S
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):695-709. PubMed ID: 29993516
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    Murphy K; Birn RM; Handwerker DA; Jones TB; Bandettini PA
    Neuroimage; 2009 Feb; 44(3):893-905. PubMed ID: 18976716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.