These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22245346)

  • 61. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity.
    Yaesoubi M; Miller RL; Calhoun VD
    PLoS One; 2017; 12(2):e0171647. PubMed ID: 28192457
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Epileptic discharges specifically affect intrinsic connectivity networks during absence seizures.
    Zhang Z; Liao W; Wang Z; Xu Q; Yang F; Mantini D; Jiao Q; Tian L; Liu Y; Lu G
    J Neurol Sci; 2014 Jan; 336(1-2):138-45. PubMed ID: 24183856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Hierarchical Organization of the Default, Dorsal Attention and Salience Networks in Adolescents and Young Adults.
    Zhou Y; Friston KJ; Zeidman P; Chen J; Li S; Razi A
    Cereb Cortex; 2018 Feb; 28(2):726-737. PubMed ID: 29161362
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.
    Deshpande G; Hu X
    Brain Connect; 2012; 2(5):235-45. PubMed ID: 23016794
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.
    Carbonell F; Bellec P; Shmuel A
    Brain Connect; 2011; 1(6):496-510. PubMed ID: 22444074
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification.
    Venkatesh M; Jaja J; Pessoa L
    Neuroimage; 2020 Feb; 207():116398. PubMed ID: 31783117
    [TBL] [Abstract][Full Text] [Related]  

  • 67. On nodes and modes in resting state fMRI.
    Friston KJ; Kahan J; Razi A; Stephan KE; Sporns O
    Neuroimage; 2014 Oct; 99():533-47. PubMed ID: 24862075
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns.
    Grandjean J; Schroeter A; Batata I; Rudin M
    Neuroimage; 2014 Nov; 102 Pt 2():838-47. PubMed ID: 25175535
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study.
    Chuang KC; Ramakrishnapillai S; Madden K; St Amant J; McKlveen K; Gwizdala K; Dhullipudi R; Bazzano L; Carmichael O
    Front Aging Neurosci; 2023; 15():1110434. PubMed ID: 36998317
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Emulative, coherent, and causal dynamics between large-scale brain networks are neurobiomarkers of Accelerated Cognitive Ageing in epilepsy.
    Bernas A; Breuer LEM; Aldenkamp AP; Zinger S
    PLoS One; 2021; 16(4):e0250222. PubMed ID: 33861794
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multivariate dynamical systems models for estimating causal interactions in fMRI.
    Ryali S; Supekar K; Chen T; Menon V
    Neuroimage; 2011 Jan; 54(2):807-23. PubMed ID: 20884354
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Causal interactions in resting-state networks predict perceived loneliness.
    Tian Y; Yang L; Chen S; Guo D; Ding Z; Tam KY; Yao D
    PLoS One; 2017; 12(5):e0177443. PubMed ID: 28545125
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches.
    Kuhnert MT; Geier C; Elger CE; Lehnertz K
    Chaos; 2012 Jun; 22(2):023142. PubMed ID: 22757549
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters.
    Sjuls GS; Specht K
    Brain Connect; 2022 Dec; 12(10):870-882. PubMed ID: 35473334
    [No Abstract]   [Full Text] [Related]  

  • 75. On the discovery of group-consistent graph substructure patterns from brain networks.
    Iakovidou ND; Dimitriadis SI; Laskaris NA; Tsichlas K; Manolopoulos Y
    J Neurosci Methods; 2013 Mar; 213(2):204-13. PubMed ID: 23274947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation.
    Rodrigues J; Andrade A
    Neuroimage; 2014 Apr; 89():358-77. PubMed ID: 24513528
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploring resting-state functional connectivity with total interdependence.
    Wen X; Mo J; Ding M
    Neuroimage; 2012 Apr; 60(2):1587-95. PubMed ID: 22289806
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Noise during rest enables the exploration of the brain's dynamic repertoire.
    Ghosh A; Rho Y; McIntosh AR; Kötter R; Jirsa VK
    PLoS Comput Biol; 2008 Oct; 4(10):e1000196. PubMed ID: 18846206
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
    Shakil S; Lee CH; Keilholz SD
    Neuroimage; 2016 Jun; 133():111-128. PubMed ID: 26952197
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functional connectivity and oscillatory neuronal activity in the resting human brain.
    Ganzetti M; Mantini D
    Neuroscience; 2013 Jun; 240():297-309. PubMed ID: 23500172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.