BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22245376)

  • 1. Approaches to the safety assessment of engineered nanomaterials (ENM) in food.
    Cockburn A; Bradford R; Buck N; Constable A; Edwards G; Haber B; Hepburn P; Howlett J; Kampers F; Klein C; Radomski M; Stamm H; Wijnhoven S; Wildemann T
    Food Chem Toxicol; 2012 Jun; 50(6):2224-42. PubMed ID: 22245376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials.
    DeLoid GM; Wang Y; Kapronezai K; Lorente LR; Zhang R; Pyrgiotakis G; Konduru NV; Ericsson M; White JC; De La Torre-Roche R; Xiao H; McClements DJ; Demokritou P
    Part Fibre Toxicol; 2017 Oct; 14(1):40. PubMed ID: 29029643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs.
    Sohal IS; O'Fallon KS; Gaines P; Demokritou P; Bello D
    Part Fibre Toxicol; 2018 Jul; 15(1):29. PubMed ID: 29970114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements.
    Petersen EJ; Henry TB; Zhao J; MacCuspie RI; Kirschling TL; Dobrovolskaia MA; Hackley V; Xing B; White JC
    Environ Sci Technol; 2014 Apr; 48(8):4226-46. PubMed ID: 24617739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group.
    Pietroiusti A; Bergamaschi E; Campagna M; Campagnolo L; De Palma G; Iavicoli S; Leso V; Magrini A; Miragoli M; Pedata P; Palombi L; Iavicoli I
    Part Fibre Toxicol; 2017 Nov; 14(1):47. PubMed ID: 29178961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways.
    Kinaret PAS; Ndika J; Ilves M; Wolff H; Vales G; Norppa H; Savolainen K; Skoog T; Kere J; Moya S; Handy RD; Karisola P; Fadeel B; Greco D; Alenius H
    Adv Sci (Weinh); 2021 May; 8(10):2004588. PubMed ID: 34026454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of nanomaterial characteristics on inhalation toxicity.
    Bierkandt FS; Leibrock L; Wagener S; Laux P; Luch A
    Toxicol Res (Camb); 2018 May; 7(3):321-346. PubMed ID: 30090585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteome-wide assessment of the oxidative stress paradigm for metal and metal-oxide nanomaterials in human macrophages.
    Zhang T; Gaffrey MJ; Thomas DG; Weber TJ; Hess BM; Weitz KK; Piehowski PD; Petyuk VA; Moore RJ; Qian WJ; Thrall BD
    NanoImpact; 2020 Jan; 17():. PubMed ID: 32133426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials.
    Saarimäki LA; Federico A; Lynch I; Papadiamantis AG; Tsoumanis A; Melagraki G; Afantitis A; Serra A; Greco D
    Sci Data; 2021 Feb; 8(1):49. PubMed ID: 33558569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
    Duan Y; Coreas R; Liu Y; Bitounis D; Zhang Z; Parviz D; Strano M; Demokritou P; Zhong W
    NanoImpact; 2020 Jan; 17():. PubMed ID: 32104746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered nanomaterials in food: implications for food safety and consumer health.
    Martirosyan A; Schneider YJ
    Int J Environ Res Public Health; 2014 May; 11(6):5720-50. PubMed ID: 24879486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MARINA Risk Assessment Strategy: A Flexible Strategy for Efficient Information Collection and Risk Assessment of Nanomaterials.
    Bos PM; Gottardo S; Scott-Fordsmand JJ; van Tongeren M; Semenzin E; Fernandes TF; Hristozov D; Hund-Rinke K; Hunt N; Irfan MA; Landsiedel R; Peijnenburg WJ; Sánchez Jiménez A; van Kesteren PC; Oomen AG
    Int J Environ Res Public Health; 2015 Nov; 12(12):15007-21. PubMed ID: 26633430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties.
    Findlay MR; Freitas DN; Mobed-Miremadi M; Wheeler KE
    Environ Sci Nano; 2018 Jan; 5(1):64-71. PubMed ID: 29881624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to describe the time-dependent dissolution of engineered nanomaterials?
    Kalapus M; Gajewicz-Skretna A; Puzyn T
    Comput Struct Biotechnol J; 2024 Dec; 25():75-80. PubMed ID: 38746661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure.
    Vital N; Ventura C; Kranendonk M; Silva MJ; Louro H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis.
    Krause B; Meyer T; Sieg H; Kästner C; Reichardt P; Tentschert J; Jungnickel H; Estrela-Lopis I; Burel A; Chevance S; Gauffre F; Jalili P; Meijer J; Böhmert L; Braeuning A; Thünemann AF; Emmerling F; Fessard V; Laux P; Lampen A; Luch A
    RSC Adv; 2018 Apr; 8(26):14377-14388. PubMed ID: 35540747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions.
    Das G; Patra JK; Paramithiotis S; Shin HS
    Int J Environ Res Public Health; 2019 Dec; 16(23):. PubMed ID: 31810271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa.
    Mackie A; Gourcy S; Rigby N; Moffat J; Capron I; Bajka B
    Nanoscale; 2019 Feb; 11(6):2991-2998. PubMed ID: 30698181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress.
    Kim JH; Park EY; Ha HK; Jo CM; Lee WJ; Lee SS; Kim JW
    Asian-Australas J Anim Sci; 2016 Feb; 29(2):288-98. PubMed ID: 26732454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health implications of engineered nanoparticles in infants and children.
    Tang S; Wang M; Germ KE; Du HM; Sun WJ; Gao WM; Mayer GD
    World J Pediatr; 2015 Aug; 11(3):197-206. PubMed ID: 26253410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.