BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2224541)

  • 1. Axonal guidance of adenosine deaminase immunoreactive primary afferent fibers in developing mouse spinal cord.
    Airhart MJ; Roberts MA; Knudsen TB; Skalko RG
    Brain Res Bull; 1990 Aug; 25(2):299-309. PubMed ID: 2224541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord.
    LaMotte C
    J Comp Neurol; 1977 Apr; 172(3):529-61. PubMed ID: 402397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog.
    Marsala J; Lukácová N; Sulla I; Wohlfahrt P; Marsala M
    Exp Neurol; 2005 Sep; 195(1):161-78. PubMed ID: 15979072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of NADPH-d and nNOS-IR in the thoracolumbar and sacrococcygeal spinal cord of the guinea pig.
    Doone GV; Pelissier N; Manchester T; Vizzard MA
    J Auton Nerv Syst; 1999 Sep; 77(2-3):98-113. PubMed ID: 10580292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of primary nitric oxide synthase- and parvalbumin- immunoreactive afferents in the dorsal funiculus of the lumbosacral spinal cord in a dog.
    Marsala J; Lukácová N; Kolesár D; Sulla I; Gálik J; Marsala M
    Cell Mol Neurobiol; 2007 Jun; 27(4):475-504. PubMed ID: 17387607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochemical relationships and central terminations of a unique population of primary afferent neurons in rat.
    Carr PA; Yamamoto T; Karmy G; Nagy JI
    Brain Res Bull; 1991 Jun; 26(6):825-43. PubMed ID: 1933403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth.
    Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S
    Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.
    Kitchener PD; Hutton EJ; Knott GW
    J Comp Neurol; 2006 Mar; 495(1):37-52. PubMed ID: 16432898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord.
    Ozaki S; Snider WD
    J Comp Neurol; 1997 Apr; 380(2):215-29. PubMed ID: 9100133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of cutaneous afferent pathways in fetal sheep: a structural and functional study.
    Rees S; Nitsos I; Rawson J
    Brain Res; 1994 Oct; 661(1-2):207-22. PubMed ID: 7834372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical and cytochemical relationships of adenosine deaminase-containing primary afferent neurons in the rat.
    Nagy JI; Daddona PE
    Neuroscience; 1985 Jul; 15(3):799-813. PubMed ID: 2415872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: biochemical, histochemical, and experimental studies at the light and electron microscopic level.
    Arvidsson U; Ulfhake B; Cullheim S; Bergstrand A; Theodorson E; Hökfelt T
    J Comp Neurol; 1991 Jun; 308(1):115-38. PubMed ID: 1714921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of immunoreactivity for calcitonin gene-related peptide, substance P and glutamate in primary sensory neurons, and for serotonin in the spinal cord of fetal sheep.
    Nitsos I; Rees S
    Neuroscience; 1993 May; 54(1):239-52. PubMed ID: 7685861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal elongation of primary afferent axons in the dorsal funiculus of the chick embryo spinal cord.
    Shiga T; Kawamoto M; Shirai T
    Brain Res Dev Brain Res; 2000 Nov; 124(1-2):25-31. PubMed ID: 11113508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular, regional and immunohistochemical localization of adenosine deaminase in various species.
    Yamamoto T; Geiger JD; Daddona PE; Nagy JI
    Brain Res Bull; 1987 Oct; 19(4):473-84. PubMed ID: 3690362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory axons are guided by local cues in the developing dorsal spinal cord.
    Sharma K; Frank E
    Development; 1998 Feb; 125(4):635-43. PubMed ID: 9435284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholaminergic innervation of the spinal dorsal horn: a correlated light and electron microscopic analysis of tyrosine hydroxylase-immunoreactive fibres in the cat.
    Doyle CA; Maxwell DJ
    Neuroscience; 1991; 45(1):161-76. PubMed ID: 1684413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal development of rat primary afferent fibers: II. Central projections.
    Mirnics K; Koerber HR
    J Comp Neurol; 1995 May; 355(4):601-14. PubMed ID: 7636034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre- and postnatal development of noradrenergic projections to the rat spinal cord: an immunocytochemical study.
    Rajaofetra N; Poulat P; Marlier L; Geffard M; Privat A
    Brain Res Dev Brain Res; 1992 Jun; 67(2):237-46. PubMed ID: 1511517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.