BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22245696)

  • 1. Modeling shear modulus distribution in magnetic resonance elastography with piecewise constant level sets.
    Li BN; Chui CK; Ong SH; Numano T; Washio T; Homma K; Chang S; Venkatesh S; Kobayashi E
    Magn Reson Imaging; 2012 Apr; 30(3):390-401. PubMed ID: 22245696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
    Suga M; Matsuda T; Minato K; Oshiro O; Chihara K; Okamoto J; Takizawa O; Komori M; Takahashi T
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):908-15. PubMed ID: 12848359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifrequency inversion in magnetic resonance elastography.
    Papazoglou S; Hirsch S; Braun J; Sack I
    Phys Med Biol; 2012 Apr; 57(8):2329-46. PubMed ID: 22460134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A; Salcudean S; Honarvar M; Sahebjavaher RS; Rohling R; Sinkus R
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1555-65. PubMed ID: 21813354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP; Rossman PJ; Arani A; Lake DS; Glaser KJ; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Mar; 77(3):1184-1192. PubMed ID: 27016276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of in-vivo local shear modulus by combining multiple phase offsets mr elastography.
    Suga M; Matsuda T; Minato K; Oshiro O; Chihara K; Okamoto J; Takizawa O; Komori M; Takahashi T
    Stud Health Technol Inform; 2001; 84(Pt 2):933-7. PubMed ID: 11604870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the shear modulus of the heel fat pads.
    Weaver JB; Doyley M; Cheung Y; Kennedy F; Madsen EL; Van Houten EE; Paulsen K
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):312-9. PubMed ID: 15698705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic Helmholtz inversion in planar magnetic resonance elastography.
    Papazoglou S; Hamhaber U; Braun J; Sack I
    Phys Med Biol; 2008 Jun; 53(12):3147-58. PubMed ID: 18495979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative shear wave magnetic resonance elastography: comparison to a dynamic shear material test.
    Ringleb SI; Chen Q; Lake DS; Manduca A; Ehman RL; An KN
    Magn Reson Med; 2005 May; 53(5):1197-201. PubMed ID: 15844144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.
    Klatt D; Friedrich C; Korth Y; Vogt R; Braun J; Sack I
    Biorheology; 2010; 47(2):133-41. PubMed ID: 20683156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MREJ: MRE elasticity reconstruction on ImageJ.
    Xiang K; Zhu XL; Wang CX; Li BN
    Comput Biol Med; 2013 Aug; 43(7):847-52. PubMed ID: 23746726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo elasticity measurements of extremity skeletal muscle with MR elastography.
    Uffmann K; Maderwald S; Ajaj W; Galban CG; Mateiescu S; Quick HH; Ladd ME
    NMR Biomed; 2004 Jun; 17(4):181-90. PubMed ID: 15229931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source.
    Brinker ST; Kearney SP; Royston TJ; Klatt D
    J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convertible pneumatic actuator for magnetic resonance elastography of the brain.
    Latta P; Gruwel ML; Debergue P; Matwiy B; Sboto-Frankenstein UN; Tomanek B
    Magn Reson Imaging; 2011 Jan; 29(1):147-52. PubMed ID: 20833495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography.
    Petrov AY; Geoffrey Chase J; Sellier M; Docherty PD
    Math Biosci; 2013 Nov; 246(1):191-201. PubMed ID: 24018294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of liver stiffness with two imaging techniques: magnetic resonance elastography and ultrasound elastometry.
    Bensamoun SF; Wang L; Robert L; Charleux F; Latrive JP; Ho Ba Tho MC
    J Magn Reson Imaging; 2008 Nov; 28(5):1287-92. PubMed ID: 18972339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Assessment of the solid-liquid behavior of the liver for the diagnosis of diffuse disease using magnetic resonance elastography].
    Klatt D; Asbach P; Somasundaram R; Hamm B; Braun J; Sack I
    Rofo; 2008 Dec; 180(12):1104-9. PubMed ID: 18814103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of off-frequency sampling in magnetic resonance elastography.
    Johnson CL; Chen DD; Olivero WC; Sutton BP; Georgiadis JG
    Magn Reson Imaging; 2012 Feb; 30(2):205-12. PubMed ID: 22055750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
    Okamoto RJ; Clayton EH; Bayly PV
    Phys Med Biol; 2011 Oct; 56(19):6379-400. PubMed ID: 21908903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.