These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2224603)

  • 1. [Evaluation of compensator used in radiation therapy].
    Lin FJ; Cheng NT; Chen HH; Chen CS; Hsien WL; Leung WM
    Changgeng Yi Xue Za Zhi; 1990 Jun; 13(2):104-17. PubMed ID: 2224603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of compensator thickness, field size, and off-axis distance on the effective attenuation coefficient of a cerrobend compensator for intensity-modulated radiation therapy.
    Haghparast A; Hashemi B; Eivazi MT
    Med Dosim; 2013; 38(1):25-9. PubMed ID: 22835650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EBT GAFCHROMIC(TM) film dosimetry in compensator-based intensity modulated radiation therapy.
    Vaezzadeh S; Allahverdi M; Nedaie HA; Ay M; Shirazi A; Yarahmadi M
    Med Dosim; 2013; 38(2):176-83. PubMed ID: 23290715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Design, development, and dosage control of individual compensatory filters for 6 MV X-ray radiotherapy].
    Zonca G; Loi G; Somigliana A; Filice S; Crippa M; Manciero S; Stucchi C; Poste D; Sichirollo AE
    Radiol Med; 1995 May; 89(5):695-701. PubMed ID: 7617914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetry considerations for a Lipowitz metal tissue compensator system.
    Henderson SD; Purdy JA; Gerber RL; Mestman SJ
    Int J Radiat Oncol Biol Phys; 1987 Jul; 13(7):1107-12. PubMed ID: 3597153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of effective attenuation coefficient for calculating tissue compensator thickness.
    Bagne FR; Samsami N; Hoke SW; Bronn DG
    Med Phys; 1990; 17(1):117-21. PubMed ID: 2106610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The value of EDR2 film dosimetry in compensator-based intensity modulated radiation therapy.
    Srivastava RP; De Wagter C
    Phys Med Biol; 2007 Oct; 52(19):N449-57. PubMed ID: 17881795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of scattering and differential attenuation on beam profile in the presence of high-density intensity modifying compensator.
    Kaushik S; Punia R; Tyagi A; Malik A
    J Cancer Res Ther; 2019 Mar; 15(Supplement):S110-S114. PubMed ID: 30900631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer aided design and verification of megavoltage tissue compensators for oblique beams.
    Faddegon BA; Pfalzner P
    Med Phys; 1988; 15(5):757-62. PubMed ID: 3141758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a multileaf collimator as a dynamic missing-tissue compensator.
    Geis P; Boyer AL; Wells NH
    Med Phys; 1996 Jul; 23(7):1199-205. PubMed ID: 8839413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the relative surface dose from Lipowitz-metal tissue compensators for 24- and 6-MV photon beams.
    Cardarelli GA; Rao SN; Cail D
    Med Phys; 1991; 18(2):282-7. PubMed ID: 1904529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a three-dimensional compensation system based on computed tomography generated surface contours and tissue inhomogeneities.
    Jursinic PA; Podgorsak MB; Paliwal BR
    Med Phys; 1994 Mar; 21(3):357-65. PubMed ID: 8208210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue compensators made of solid water or lead for megavoltage X-ray radiotherapy.
    Constantinou C; Harrington JC
    Med Dosim; 1989; 14(1):41-7. PubMed ID: 2500947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytic approach to optimized retracted missing tissue compensators.
    Robinson DM; Scrimger JW
    Med Dosim; 1990 Jun; 15(2):51-9. PubMed ID: 2118359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of the accuracy of a compensating filter based on compact NC-Mill for radiation therapy].
    Oguchi H; Miyazawa M; Takizawa M
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2007 Aug; 63(8):877-87. PubMed ID: 17917352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological properties of a wax-gypsum compensator material.
    du Plessis FC; Willemse CA
    Med Phys; 2005 May; 32(5):1246-55. PubMed ID: 15984675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized tissue compensators.
    Robinson DM; Scrimger JW
    Med Phys; 1990; 17(3):391-6. PubMed ID: 2385196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of peripheral doses for different IMRT techniques delivered by a Siemens linear accelerator.
    Wiezorek T; Voigt A; Metzger N; Georg D; Schwedas M; Salz H; Wendt TG
    Strahlenther Onkol; 2008 Feb; 184(2):73-9. PubMed ID: 18259698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of scattering foil compensators in electron beam therapy.
    Ulin K; Palisca M
    Int J Radiat Oncol Biol Phys; 1996 Jul; 35(4):785-92. PubMed ID: 8690646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear attenuation coefficients for compensator based IMRT.
    Bartrum T; Bailey M; Nelson V; Grace M
    Australas Phys Eng Sci Med; 2007 Dec; 30(4):281-7. PubMed ID: 18274068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.