These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22246046)

  • 1. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.
    Du X; Li J; Gao Y; Kuang Y; Xu B
    Chem Commun (Camb); 2012 Feb; 48(15):2098-100. PubMed ID: 22246046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels Based on Ag
    Hu Y; Xie D; Wu Y; Lin N; Song A; Hao J
    Chemistry; 2017 Nov; 23(62):15721-15728. PubMed ID: 28833801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first CD73-instructed supramolecular hydrogel.
    Wu D; Du X; Shi J; Zhou J; Zhou N; Xu B
    J Colloid Interface Sci; 2015 Jun; 447():269-72. PubMed ID: 25524006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
    Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B
    Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Supramolecular Assemblies from Amphiphilic Nucleoside Phosphoramidate Nanofibers by Enzyme Activation.
    West HT; Csizmar CM; Wagner CR
    Biomacromolecules; 2018 Jul; 19(7):2650-2656. PubMed ID: 29689161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel.
    Zhou J; Du X; Gao Y; Shi J; Xu B
    J Am Chem Soc; 2014 Feb; 136(8):2970-3. PubMed ID: 24512553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-healing metal-coordinated hydrogels using nucleotide ligands.
    Liang H; Zhang Z; Yuan Q; Liu J
    Chem Commun (Camb); 2015 Oct; 51(82):15196-9. PubMed ID: 26329792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conducting hydrogels of tetraaniline-g-poly(vinyl alcohol) in situ reinforced by supramolecular nanofibers.
    Huang H; Li W; Wang H; Zeng X; Wang Q; Yang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1595-600. PubMed ID: 24443880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes.
    Gao Y; Zhao F; Wang Q; Zhang Y; Xu B
    Chem Soc Rev; 2010 Sep; 39(9):3425-33. PubMed ID: 20623068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels.
    Shy AN; Li J; Shi J; Zhou N; Xu B
    J Drug Target; 2020; 28(7-8):760-765. PubMed ID: 32668995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality-influenced antibacterial activity of methylthiazole- and thiadiazole-based supramolecular biocompatible hydrogels.
    Baddi S; Dang-I AY; Huang T; Xing C; Lin S; Feng CL
    Acta Biomater; 2022 Mar; 141():59-69. PubMed ID: 35063710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytically triggered co-assembly of two-component core/shell nanofibers.
    Abul-Haija YM; Roy S; Frederix PW; Javid N; Jayawarna V; Ulijn RV
    Small; 2014 Mar; 10(5):973-9. PubMed ID: 24027125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Environment-Differentiated Self-Assembly of Nanofibers.
    Zheng Z; Chen P; Xie M; Wu C; Luo Y; Wang W; Jiang J; Liang G
    J Am Chem Soc; 2016 Sep; 138(35):11128-31. PubMed ID: 27532322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width.
    Zhang Y; Zhang B; Kuang Y; Gao Y; Shi J; Zhang XX; Xu B
    J Am Chem Soc; 2013 Apr; 135(13):5008-11. PubMed ID: 23521132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent.
    Li X; Li J; Gao Y; Kuang Y; Shi J; Xu B
    J Am Chem Soc; 2010 Dec; 132(50):17707-9. PubMed ID: 21121607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.