BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22246100)

  • 1. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target.
    Shaltiel G; Hanan M; Wolf Y; Barbash S; Kovalev E; Shoham S; Soreq H
    Brain Struct Funct; 2013 Jan; 218(1):59-72. PubMed ID: 22246100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired hippocampal plasticity and errors in cognitive performance in mice with maladaptive AChE splice site selection.
    Farchi N; Shoham S; Hochner B; Soreq H
    Eur J Neurosci; 2007 Jan; 25(1):87-98. PubMed ID: 17241270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic Stress Signals Accompany MicroRNA-Associated Stereotypic Behavior and Glutamatergic Neuromodulation in the Prefrontal Cortex.
    Moshitzky G; Shoham S; Madrer N; Husain AM; Greenberg DS; Yirmiya R; Ben-Shaul Y; Soreq H
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32503154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic inactivation of acetylcholinesterase impairs homeostasis in mouse hippocampal granule cells.
    Cohen JE; Zimmerman G; Melamed-Book N; Friedman A; Dori A; Soreq H
    Hippocampus; 2008; 18(2):182-92. PubMed ID: 17960645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary hippocampal neuronal cell death induction after acute and repeated paraquat exposures mediated by AChE variants alteration and cholinergic and glutamatergic transmission disruption.
    Del Pino J; Moyano P; Díaz GG; Anadon MJ; Diaz MJ; García JM; Lobo M; Pelayo A; Sola E; Frejo MT
    Toxicology; 2017 Sep; 390():88-99. PubMed ID: 28916328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation.
    Nijholt I; Farchi N; Kye M; Sklan EH; Shoham S; Verbeure B; Owen D; Hochner B; Spiess J; Soreq H; Blank T
    Mol Psychiatry; 2004 Feb; 9(2):174-83. PubMed ID: 14581933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in brain MicroRNAs contribute to cholinergic stress reactions.
    Meerson A; Cacheaux L; Goosens KA; Sapolsky RM; Soreq H; Kaufer D
    J Mol Neurosci; 2010 Jan; 40(1-2):47-55. PubMed ID: 19711202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic acetylcholinesterase targeted by microRNA-212 functions as a tumor suppressor in non-small cell lung cancer.
    Lu L; Zhang X; Zhang B; Wu J; Zhang X
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2530-40. PubMed ID: 23974008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase.
    Erb C; Troost J; Kopf S; Schmitt U; Löffelholz K; Soreq H; Klein J
    J Neurochem; 2001 Apr; 77(2):638-46. PubMed ID: 11299326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effect of lavender oil on scopolamine induced cognitive deficits in mice and H
    Xu P; Wang K; Lu C; Dong L; Gao L; Yan M; Aibai S; Liu X
    J Ethnopharmacol; 2016 Dec; 193():408-415. PubMed ID: 27558947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase.
    Shaked I; Meerson A; Wolf Y; Avni R; Greenberg D; Gilboa-Geffen A; Soreq H
    Immunity; 2009 Dec; 31(6):965-73. PubMed ID: 20005135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin.
    Li F; Wei G; Bai Y; Li Y; Huang F; Lin J; Hou Q; Deng R; Zhou JH; Zhang SX; Chen DF
    Brain Res; 2015 Nov; 1627():177-88. PubMed ID: 26423933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase inhibitor pretreatment alters stress-induced expression of acetylcholinesterase transcripts in the mouse brain.
    Dori A; Oriel S; Livneh U; Duek O; Lin T; Kofman O
    Neuroscience; 2011 Jun; 183():90-8. PubMed ID: 21453753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain and regional dependence of alternate splicing of acetylcholinesterase in the murine brain following stress or treatment with diisopropylfluorophosphate.
    Livneh U; Dori A; Katzav A; Kofman O
    Behav Brain Res; 2010 Jun; 210(1):107-15. PubMed ID: 20178819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac over-expression of microRNA-1 induces impairment of cognition in mice.
    Ma JC; Duan MJ; Sun LL; Yan ML; Liu T; Wang Q; Liu CD; Wang X; Kang XH; Pei SC; Zong DK; Chen X; Wang N; Ai J
    Neuroscience; 2015 Jul; 299():66-78. PubMed ID: 25943483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats.
    Bahi A
    Behav Brain Res; 2016 Sep; 311():298-308. PubMed ID: 27211062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology.
    Berson A; Knobloch M; Hanan M; Diamant S; Sharoni M; Schuppli D; Geyer BC; Ravid R; Mor TS; Nitsch RM; Soreq H
    Brain; 2008 Jan; 131(Pt 1):109-19. PubMed ID: 18056160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke.
    Yang FW; Wang H; Wang C; Chi GN
    J Cell Biochem; 2020 Jan; 121(1):135-141. PubMed ID: 31578769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the read through variant of acetylcholinesterase in anxiogenic effects of predator stress in mice.
    Adamec R; Head D; Soreq H; Blundell J
    Behav Brain Res; 2008 May; 189(1):180-90. PubMed ID: 18243359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-27a-3p suppression of peroxisome proliferator-activated receptor-γ contributes to cognitive impairments resulting from sevoflurane treatment.
    Lv X; Yan J; Jiang J; Zhou X; Lu Y; Jiang H
    J Neurochem; 2017 Nov; 143(3):306-319. PubMed ID: 28881034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.