These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 22246255)
1. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae. Naikkhwah W; O'Donnell MJ J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255 [TBL] [Abstract][Full Text] [Related]
2. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity. Naikkhwah W; O'Donnell MJ J Exp Biol; 2011 Oct; 214(Pt 20):3443-54. PubMed ID: 21957108 [TBL] [Abstract][Full Text] [Related]
3. Secretion of water and ions by malpighian tubules of larval mosquitoes: effects of diuretic factors, second messengers, and salinity. Donini A; Patrick ML; Bijelic G; Christensen RJ; Ianowski JP; Rheault MR; O'Donnell MJ Physiol Biochem Zool; 2006; 79(3):645-55. PubMed ID: 16691529 [TBL] [Abstract][Full Text] [Related]
4. The rectal complex and Malpighian tubules of the cabbage looper (Trichoplusia ni): regional variations in Na+ and K+ transport and cation reabsorption by secondary cells. O'Donnell MJ; Ruiz-Sanchez E J Exp Biol; 2015 Oct; 218(Pt 20):3206-14. PubMed ID: 26491192 [TBL] [Abstract][Full Text] [Related]
5. Effects of chronic exposure to dietary salicylate on elimination and renal excretion of salicylate by Drosophila melanogaster larvae. Ruiz-Sanchez E; O'Donnell MJ J Exp Biol; 2007 Jul; 210(Pt 14):2464-71. PubMed ID: 17601950 [TBL] [Abstract][Full Text] [Related]
6. Ion-selective microelectrode analysis of salicylate transport by the Malpighian tubules and gut of Drosophila melanogaster. O'Donnell MJ; Rheault MR J Exp Biol; 2005 Jan; 208(Pt 1):93-104. PubMed ID: 15601881 [TBL] [Abstract][Full Text] [Related]
7. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in Yerushalmi GY; Misyura L; MacMillan HA; Donini A J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271 [TBL] [Abstract][Full Text] [Related]
8. Effects of dietary or injected organic cations on larval Drosophila melanogaster: mortality and elimination of tetraethylammonium from the hemolymph. Bijelic G; Kim NR; O'Donnell MJ Arch Insect Biochem Physiol; 2005 Oct; 60(2):93-103. PubMed ID: 16175537 [TBL] [Abstract][Full Text] [Related]
9. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Vanderveken M; O'Donnell MJ Arch Insect Biochem Physiol; 2014 Feb; 85(2):76-93. PubMed ID: 24408875 [TBL] [Abstract][Full Text] [Related]
10. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake. Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826 [TBL] [Abstract][Full Text] [Related]
11. Segment-specific Ca(2+) transport by isolated Malpighian tubules of Drosophila melanogaster: A comparison of larval and adult stages. Browne A; O'Donnell MJ J Insect Physiol; 2016 Apr; 87():1-11. PubMed ID: 26802560 [TBL] [Abstract][Full Text] [Related]
12. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance. Ianowski JP; O'Donnell MJ J Exp Biol; 2004 Jul; 207(Pt 15):2599-609. PubMed ID: 15201292 [TBL] [Abstract][Full Text] [Related]
13. Ion-selective microelectrode measurements of Tl⁺ and K⁺ transport by the gut and associated epithelia in Chironomus riparius. Belowitz R; O'Donnell MJ Aquat Toxicol; 2013 Aug; 138-139():70-80. PubMed ID: 23721849 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity. Jonusaite S; Kelly SP; Donini A J Exp Biol; 2013 Oct; 216(Pt 19):3637-48. PubMed ID: 23788699 [TBL] [Abstract][Full Text] [Related]
15. The roles of V-type H D'Silva NM; Donini A; O'Donnell MJ J Insect Physiol; 2017 Apr; 98():284-290. PubMed ID: 28188726 [TBL] [Abstract][Full Text] [Related]
16. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti). Pacey EK; O'Donnell MJ J Insect Physiol; 2014 Feb; 61():42-50. PubMed ID: 24406662 [TBL] [Abstract][Full Text] [Related]
17. Ammonium secretion by Malpighian tubules of Drosophila melanogaster: application of a novel ammonium-selective microelectrode. Browne A; O'Donnell MJ J Exp Biol; 2013 Oct; 216(Pt 20):3818-27. PubMed ID: 23821719 [TBL] [Abstract][Full Text] [Related]
18. Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. Donini A; Gaidhu MP; Strasberg DR; O'donnell MJ J Exp Biol; 2007 Mar; 210(Pt 6):983-92. PubMed ID: 17337711 [TBL] [Abstract][Full Text] [Related]
19. Cadmium transport by the gut and Malpighian tubules of Chironomus riparius. Leonard EM; Pierce LM; Gillis PL; Wood CM; O'Donnell MJ Aquat Toxicol; 2009 May; 92(3):179-86. PubMed ID: 19251326 [TBL] [Abstract][Full Text] [Related]
20. Na+ competes with K+ in bumetanide-sensitive transport by Malpighian tubules of Rhodnius prolixus. Ianowski JP; Christensen RJ; O'Donnell MJ J Exp Biol; 2004 Oct; 207(Pt 21):3707-16. PubMed ID: 15371478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]